STSaYL

*a33aleye1 *euersrnoy

u123S3AYyInos Jo A3rsIaatuj)yeurd
“@°93 SHILSXS NOTLVIIOINT FATIOVHEIIAT

404 SFOVIQIINT 33SO 3D NOILVITIVAE IRV NOISIT

paduvapy 103 123U3d)

0LSEBLO Z8/€D
setoupn

(Zeghgl -9D-vSVYR)

JHI 324 X9D5TJXQ0RIIN V¥

ZL5NL-68R

I R EE R R EE R SRR E S R R E R RS A R RS S R R R R R SRR SRS SR SRR R R R R R R R R R

E J %
* E
4 %
* USL / DBMS NASA / RECON *
* %
* %
* WORKING PAPER SERIES *
x
* %
* x
* Report Number *
*]
¥ EJ
* DEMS .NASA/RECON-24 *
3 %z
b d
t %
I E R R EE R R EE R R EE R R R R R R R E R R R S R R S R R R R R R R R R R R R R E TR E SRR R R £

The USL/DBMS NASA/RECON Working Paper Series contains a
collection of reports representing results of activities being
conducted by the Center for Advanced Computer Studies of the
University of Southwestern Louisiana pursuant to the
specifications of National Aeronautics and Space Administration
Contract Number NASW-3846. The work on this contract is being
performed jointly by the University of Southwestern Louisiana and
Southern University.

For more information, contact:

Wayne D. Dominick

Editor
USL/DBMS NASA/RECON Working Paper Series
Center for Advanced Computer Studies
University of Southwestern Louisiana
P. O. Box 44330
Lafayette, Louisiana 70504
(318) 231-6308

A Personal Computer-based Protocols for Interface Prototyping and Evaluation (PC/PIPE) system is
proposed. The system will be composed of two main components. The first component will be a set of
tools to support the design and implementation of a user interface. The second component will be a
set of run-time support tools which will handle interaction between the user and the system, and will
provide facilities for monitoring user interactions for conducting serious evaluations of user interfaces.

This report represents one of the 72 attachment reports to the University of Southwestern Louisiana’s
Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in
using this report out of the context of the full Final Report.

A METHODOLOGY FOR THE
DESIGN AND EVALUATION OF USER INTERFACES

FOR INTERACTIVE INFORMATION SYSTEMS

A Dissertation Prospectus
Presented to
The Graduate Faculty of
The University of Southwestern Louisiana
In Partial Fulfillment of the
Requirements for the Degree

Doctor of Philosophy

Mohammad U. Faroogq

Spring 1986

DISSERTATION PROSPECTUS

Ma jor: : Computer Science

Tentative Title: A Methodology for the Design and Evaluation of

User Interfaces

Systems

Student: Mohammad U. Farooq

Approval Recommended:

Wayne D. Dominick, Chairpersan
Associate Professor

Center for Advanced Computer
Studies

Lois M. L. Delcambre
Assistant Professor

Center for Advanced Computer
Studies

for Interactive Information

Bl Ve

William R. Edwards, Jr.
Associate Professor

Center for Advanced Computer
Studies

Joan T. Cain
Dean, Graduate School

- ABSTRACT

Software development research is experiencing a significant
shift in resecarch emphasis from producing more elegant and faster
algorithms toward producing more user-oriented systems.
Researchers in psychology, human factors, computer science, and
related disciplines have started serious analyses of human
computer interactions. It has been recognized by the researchers
that the design of good user interfaces is more of an art form
than a science or engineering discipline. Also, methodologies
and tools are lacking for designing, implementing, maintaining,
and evaluating user interfaces for information systems.

The major objectives of this research are: the development
of a comprehensive, objective, and generalizable methodology for
the design and evaluation of wuser interfaces for information
systems; the development of equations and/or analytical models to
characterize user behavior and the performance of a designed
interface; the design of a prototype system for the development
and administration of user interfaces; and the design and use of
controlled experiments to support the resecarch and test/validate
the proposed methodology.

The proposed design methodology views the user interface as
a virtual machine composed of three layers: an interactive layer,
a dialogue manager layer, and an application interface layer. A
command language model of user system interactions is presented
because of its inherent simplicity and structured approach based
on interaction events. All interaction events have a common
structure based on common generic eclements necessary for a
successful dialogue. It is shown that, using this model, various
types of interfaces could be designed and implemented to
accommodate various categories of wusers. The implementation
methodology is discussed in terms of how to represent the various
types of information pertaimning to an interaction event, and how
to store and organize the information.

A generalized evaluation methodology is also proposed for
the <evaluation of wuser imterfaces. The methodology will allow
interface developers to evaluate wuser interfaces from the
viewpoint of the performance of their users. A Personal
Computer-based Protocols for Interface Prototyping and Evaluation
(PC/PIPE) system is proposed. The system will be composed of two
main components. The first component will be a set of tools to
support the design and implementation of a wuser interface. The
second component will be a set of run-time support tools which
will handle interaction between the user and the system, and will
provide facilities for monitoring user interactions for
conducting serious evaluations of user interfaces.

iii

TABLE OF CONTENTS

LIST OF FIGURES.Q....Q.-oooooa..ooocoo.o...o.c-oollonno.-o..n' Vi

PAGE
ImmUcI‘lm‘....'......l... & ® o & ® o & & o ® & & & 0 9 o 0 ®* ® O & @ 1
1.1 The Problem.....covceeeeeeee e eeeencsevassenas e e e e . 1

1.2 Formal Tools for the Development of User Interfaces. §

RESEARCH AND DEVELOPMENT OBJECTIVES....... ceereessesnnann 10
2.1 General Research Objectives............ ceeesseseennen 10
2.2 Specific Research Objectives.................. ceeene 11
2.2.1 Methodological Objectives............. ceneenn 11
2.2.2 Theoretical Objectives.......cccvvvenvenen... 14
2.2.3 System Design Objectives..........co000encnn . 15
2.2.4 Application Objectives.......... e ¥
2.2.5 Experimental Design Objectives............ eos 18

2.2.6 Evaluation Objectives.........cccevceececacacs 19
PROPOSED METHODOLOGY.ceeveetannn P X

3.1 User Interface as a Virtual Machine......cccceeveese. 23

3.2 A Model of User System Interaction........cccccceccnn. 28
3.3 Implementation Methodology........cc000ccen et 39
3.4 Evaluation Methodology.......ccceennn teceessaceacens 40
3.5 Summary of Proposed Methodology........... et esaaeas 53
BACKGROUND AND STATE-OF-THE-ART........ccicciieececcccens 55
4.1 User Resecarch in Computer Science.............. cees. 55
4.2 Survey of Specification Techniques............ ceeess 59

4.3 Analytical Studies of User System Interaction....... 64

4.4 Research on User Models.........ccocceue cesesesesaces 66

iv

4.5 Survey of User Interface Management Systems......... 72

5. PROTOCOLS FOR INTERFACE PROTOTYPING AND EVALUATION
SYSTEM (PIPE) .. .civetieeeeeeunosseesoncsncsonsssascnsanssas 76
5.1 Role of PIPE.......cuiiieniciniitiinrtencennenn 76
§$.2 The Proposed Systelm......c..coveensoscsocsascoccccsas 78
5.2.1 User Interface Design Subsystem.............. 79
5§.2.2 User Interface Execution Subsystem........... 81
6. SUMMARY OF PROPOSED RESEARCH.teteceeccnnocssaonsoanns 83
REFERENCES . . ¢ttt ceteeeersesacssasasesannsscsssssseccsossonossnsscecs 86

LIST OF FIGURES

PAGE
Definition of a User Interface.......... e ¥ |
Functions of a User Interface............. cececeteenessann 25
Layers of a User Interface...... seesssena ceseons ceesseaes 27

Main Phases of an Interaction Event........cctcvveeeaeass 32

The Event Cycle. ...ttt eneeeranonacnsos Ceescscacessaanne 35
Transition Control Primitives.......... ceecesnvsecncosene ca-. 38
User Interface Monitoring and Evaluation Schematic....... 44

vi

1. INTRODUCTION

"Man must become the prime focus of system design. The
computer is there to serve him, to obtain information for him,
and to help him do his job. The ease with which he communicates
with it will determine the extent to which he uses it. Whether
or not he uses it powerfully will depend upon the man-machine
language available to him and how well he is able to understand

it.” [MART73]

1.1 The Problem

It is widely recognized by users of interactive information
systems (a particular class of software systems characterized by
conversational access to data [WASS84]) that the wuser interface
is often designed without serious consideration for the user on
the part of the designers. Implementation considerations such as
program speed and size have always figured prominently in the
design of most computer systems and these concerns often result
in design decisions which are awkward for the user. The design
of a user interface is often perceived as secondary to the system
which it serves. This is a rather serious problem in its own

right.

There are several reasons why software developers continue
to produce software products with poor user interfaces [ATWO34,

SCHV84, EHRI83, BOKES80, KRAU80]. For example:

1. Human engineering is expensive and there is not any real

consensus on what good human engineering is.

2. Software designers are not always aware of the poor human

engineering of their products.

3. The knowledge and background of the system designers and

that of the users of the system are often radically

—

-

different.

4. The definition of very high-level interfaces, including the
support of a subset of natural language, and the development
of strategiés to answer questions require a deep
understanding of general psychology, psychology of
languages, and linguistics, which are mnot intuitively

obvious to the designer.

5. Vendors assume that special training is essential for the
use of their products and therefore often do not really care

about the user interface.

6. Current methodology and software design tools do not
adequately support the design, implementation, and

evaluation of user interfaces.

The failure to take the design of user interfaces seriously
can be remedied by a change in the attitudes of designers.
There is an increasing awareness on the part of system designers
that ad hoc design processes, based on intuition and limited
experience, may have sufficed in the design of early programming
languages and interactive languages, but are insufficient for
designing user interfaces for information systems which are being
used by an increasing number of diverse communities of wusers
[SHNE79]. We also see a shift in the resecarch emphasis from
producing more elegant and faster algorithms towards producing
user-oriented systems [BORG84]. Technological advances have magde
computers faster and more powerful so that the speed of
algorithms is no longer the most important issue. Development of
silicon chip microporocessors have made computers more and more
inexpensive and accessible to a wider spectrum of potemntial
users. Therefore, there have been many demands for more
"user-friendly” systems, but we do not understand human-computer
compatibility well enough even to agree on what “user-friemdly”
means. The U. S. National Research Council in an important
policy report [USNR83] calls for a workable definitiomn of
"user-friendly”; a database of cognitive population
characteristics related to human-computer performance; and, among

other things, a call for some consensus on a <classification of

users.

Because of these needs, human-computer interaction has
become an active area of research and has brought together a
mixed group of researchers in psychology, human factors, computer
science, and related disciplines [ATWO84, BORG84]. Research in
human-computer interaction serves several goals [BORG84, REIS83,
MDORA81b]. Some of this research is directed toward formulating
theory, as resecarchers attempt to understand the human processes
involved in comprehending and manipulating a complex system. Some
research uses human-computer interaction as a practical
application for understanding broader issues of human behavior.
Still other research is directed toward evaluating an existipg
design or developing guidelines or priniciples for future systems
design. In a broad sense, all of this research eventually leads
to design issues - the better we can understand the human

processes involved, the better we can design systems to support

these processes.

The majority of human-computer interaction studies are
behavioral experiments. As Reisner [REIS83] points out, these
experiments are usually difficult, costly, and time consuming to
conduct. This problem has serious conseqﬁences. Because of being
time consuming and costly, such experiments are frequently not
conducted at all. In the system design phase, failure to uncover
usability problems can be disastrous to the end user. A system
which is poorly designed from the viewpoint of the wuser does

nothing to improve his quality of life. Amnother consequence is

that experiments are run, but not run weil. It might be possible
that only tl;e initial use of a system is tested, and not long
term use. Only a few experimental subjects might be used, or
worse yet, these users might not even be representative of the
actual wusers of the system. A further difficulty is that an
implemented system is usually required on which to perform the
experiments. At the very least, a simulation or a prototype is
frequently needed. By the time such a system is available, it
might be too late for experiments to meaningfully aid in the
system design process. The lack of a theoretical understanding
of principles of human factors is another serious difficulty,
which is also intellectually wunsatisfying for the serious
rescarcher. Most experiments indicate whether a system meets its
usability goals, or which of two system 1is easier to wuse, or

where wusers make mistakes. These experiments do not indicate why

these results are obtained.

1.2 Formal Tools and Methodologies for User Interfaces

We understand human beh;vior much less than we understand
computers; the designing of user interfaces is one of the hardest
aspect of systems design. Clearly, there is a need to provide
better methodologies and tools for designing, implementing,
maintaining, and evaluating wuser interfaces for information

systems.

The proposed rescarch addresses this need by providing a
methodology « and tools for designing and evaluating wuser
interfaces. The approach presented in the proposed research
recognizes that the creation of a user interface requires special
skills, special system capabilities, special tools, and special

methodologies because it is an intrinsically different activity

from the coding of computational algorithms.

There are several important reasons for introducing formal
tools and methodologies into the task of producing well
engineered wuser interfaces. One reason is that, in the current
state of the field, there are too many unsupported, sometimes
conflicting, design priniciples [GEBH78, MAGUS2, SHNESO,.ﬁHLS82].
Most of these guidelines are based on the intuition and
experience of particular designers with particular systems. Few
of these intuitions have been evaluated experimentally.
Carefully designed tools may be able to enforce consistency and
encourage the designer to use techniques seclected for their
ceffectiveness on the basis of behavioral evidence. Another
reason is that current methodology requires interface design
logic to be treated as though it were the tedious detail of the
system it is designed to serve. As a consequence, a user
interface is woven into the software fabric in such a way that
sof tware vendors and designers simply become committed to
inferior interfaces because they are too complex and expensive

to reprogram [EHRI83]. An example will illustrate this point.

Most programmers using a high-level language tend to specifify
input-output formatting at the point where the input-cutput
statements reference those format specifications. These details
are usually totally irrelevant to the computational task whose
logic was interrupted by the occurrence of the input-output
statements. Later, when the formatting needs to be altered, it
may be almost impossible to locate the <code that produced the

erroneous format.

A more important reason for introducing formal tools amnd
methodologies is that the design and programming of user
interfaces for interactive systems is a high-cost activit;.
Industry surveys [ROWE83)] indicate that around 50 percent' of the
coding effort in a typical data base application is usually spent
on the implementation of wuser interface routines. There are
commercially available software systems, <called application
generators, which are geared primarily to support data intensive
application development [MART32]. These systems have their
origin in the early report-generator systems, such as IBM’S RPG.
Contemporary application gemnerators typically consist of a
database management system, report generator, database query
language, graphics package, and special purpose software, such as
financial modeling or statistical analysis packages. An
investigation by Horowitz, Kemper, and Narasimhan [HORO8S]
indicated that there are very few application generators which

provide any facility for the tailoring of user interfaces.

Eagsy to use tools which reduce the ¢time and cost for
tailoring user interfaces are necessary for the design and
administration of user interfaces. The methodology presented in
this research will force the designer of a system to think in a
specific way about the user interface by providing a separation
of interface and applications. The methodology will also assist
a designer in developing a system wusing a rapid prototyping
approach [BLUMSB2] to expedite the creation of user interfaces and
make it possible to change them ecasily. More importantly, this

research will contribute to changing the design of user interface

from being an ad hoc process to being structured and planned. __

A Personal Computer-based Protocols for Interface
Prototyping and Evaluation (PC/PIPE) system is proposed. The view
presented in this research is similar to that of a data base
management system. A data base management system provides a
service primarily for an application programmer and can be
evaluated well in terms of computational efficiency. While an end
user does benefit from multiple access paths, data security,
recovery, and the 1like, the end user does not necessarily view
these capabilities as principal goals of the data base management
system [THOMB3]. However, the end user is the principal audience

of the PC/PIPE.

An automated design system is desirable for a variety of
reasons in addition to the obvious potential for saving some of

the ecxpenses associated with interface design. For example, such

a system could produce more consistent user interfaces than those
produced by_one or more human designers, and, as new knowledge
becomes available, it will be easier to update the PC/PIPE’s data
(or knowledge) base than to wupdate the knowledge base of all

individuals who design interfaces.

There are four rescarch threads that the proposed research
will bring together: the notion of user models (characterization
of users by system designers, system image provided by the
designers, and mental image of the system that shapes up in the
user’s mind), specification of wuser interfaces via formal
methods, analytical tools for evafuating user interfaces, and the
use of behavioral tests of models of user computer interaction.
This proposal is centered around the research and development

objectives to be identified in Chapter 2.

2. RESEARCH AND DEVELOPMENT OBJECTIVES

The intent of this chapter is to define the set of research
and development objectives which will structure and direct all of
the activities to be performed within the scope of this proposed
research. Research objectives are first stated in general terms
in Section 2.1 and then refined into specific research objectives

in Section 2.2.

2.1 General Resecarch Objectives -

1. General Methodological Objective:
The development of a comprehensive, objective and
generalizable methodology for the design and evaluation of

user interfaces for information systems.

2. General Theoretical Objective:
The development of cquations and/or analytic models to
characterize user behavior and performance of the designed

interface.

3. General System Design Objective:
The design of a prototype system for the development and
administration of user interfaces for interactive

information systems.

10

11

4. General Experiment Design and Impiementation Objective:

The design and use of controlled experiments to support the

research and test/validate the proposed methodology.

S. General Application Objective:
The application of the methodology to the design,
implementation, and management of a common user interface to
selected existing information systems environments. The
application environment for all of these activities will be

a common desktop microcomputer such as an IBM PC.

6. General Evaluation Objective: -
The <evaluation of the completeness, generalizability, amnd
overall quality of the methodology and its supportive

components.

2.2 Specific Research Objectives

The following subsections describe the specific objectives
of this research. These are refinements of their respective

general research objectives identified within Section 2.1.

2.2.1 Methodological Objectives

The following are the specific methodological objectives

identified for this rescarch:

12

Develop a model of user system interaction for evaluating
alternative user interface designs. The model should
provide support for multi-level wuser models, multi-level

interface models, and performance criteria.

Significance - The model will serve as a framework for
integrating design and evaluation studies for alternative
user interface designs and alternative wuser models.
Generalizability across applications and user tasks is the

main orientation of this model.

Develop algorithms to predict wuser performance within
alternative user language designs for a given class of

users.

Significance - Analytic models based upon the user model and
interface design model will predict the wuser performance

before the interface is actually implemented.

Degign and conduct experiments to compare predicted
performance against actual performace (as measured by
automated monitoring facilities) in order to fine-tune the

prediction algorithms.

Significance - The analytic models comprising the

performance prediction algorithms will be calibrated

according to empirical data for a given class of users.

13

Incorporate the performance prediction algorithms into
PC/PIPé; This incorporation will aid in the detection of
performance bottlenecks by exposing the major components of
observed (or predicted) performance and the contributing
factors in terms of wunderlying user interface design

structures.

Significance - The performance prediction algorithms will
become the core of PC/PIPE whose shell analyzes the input
and output parameters to determine performance bottlenecks

and their major contributing factors.

—

Develop a user interface design aid which will generate
interface designs to meet pre-specified wuser interface

performance criteria for a given class of users.

Significance - The PC/PIPE will choose, from available
language structures, a set which will either meet
pre-specified performance specifications or a set which will

yield "optimal” performance for a given class of users.

Develop a user interface re-design tool which will determine
an appropriate remedy, from a given set of alternatives, for
a performance bottleneck detected within an existing wuser

interface design.

Significance - The re-design tool will be a part of the

PC/PIPE and will identify any potential bottlenecks <created

14

by the redesign.

7. Examine the feasibility of performing dynamic redesign of
user interfaces based wupon the chosen remedy for a

bottleneck.

Significance - Experiments will be designed and conducted to
determine the degree of performance improvements attained by
a suggested redesign of an interface. If significant
performance improvements are detected, the interface
redesign can possbily be performed automatically, without

designer intervention. -

8. Develop a mechanism to provide feedback into the redesign
tool so that past decisions and their effects can become a

part of the decision process.

Significance - Truly adaptive interfaces can only be
generated by making the system aware of its past

performance. The PC/PIPE philosophy will be a step toward

automated generation of adaptive interface designs.

2.2.2 Theoretical Objectives

The following are the specific theoretical objectives

identified for for this research:

1. Identify the primary measurement parameters which

characterize user interface performance.

15

Significance - A major component of the user interface

evaluation model will be the identification of performance

metrics which span input devices and user models.

2. Develop a formal grammar to characterize the various actions

a user performs to interact with an information system.

Significance - The formal grammar will provide abstract

representation of all actions performed by a user.

3. Develop formal models to predict user performance for

alternative interface designs for a given class of users.

—

-

Significance - Analy;ical models will predict wuser

performance before the interface is actually implemented.

4. Develop formal models to characterize the user tasks which a

user is trying to accomplish with the system.

Significance - The task model will provide a notation which
the designer can use when performing task analysis and

describing the problem a user is trying to solve.

2.2.3 System Design Objectives

The following are the specific system design objectives

identified for this research:

1. Redesign and implement PC/MISI using conventional software

development methodologies and programming tools.

16

Significance - PC/MISI is a Personal Computer-based Multiple

Information Systems Interface which will provide access to
remotely located information systems using one common
language [HALL84, HALL85a, HALL85b]. This will serve as an

experimental tool for benchmark purposes.
Design and implement a user interface development subsystem.

Significance - The subsystem will provide facilities to an
interface designer for the specification and modification of

user interfaces.

Design and implement a user interface execution subsystem.

Significance - The subsystem will provide runtime support

for the testing of designed interfaces.

Design and implement storage structures for user interaction

sequences.

Significance - Separate structures for interface logic and
dialogues will help in the rapid skeleton implementation of

user interfaces.
Design and implement software monitor structures.

Significance - A software monitor will be built into the

developed user interface for evaluative purposes.

17

Design and implement a <centralized help facility for

PC/PIPE.

Significance - An interface designer will not have to be an

expert programmer.
Design and implement design validation procedures.

Significance - Such procedures will allow the production of
consistent user interfaces (similar user commands for
similar functions, consistent conventions for commands and

abbreviations, and consistent reactions to user errors).

2.2.4 Application Objectives
The following are the specific application objectives

identified for this research:

1. Implementation of PC/MISI user interface (menu level,
command level and direct access level of PC/MISI) using the
PC/PIPE.

Significance - This implementation will illustrate the
applicability of the methodology to a common interface with
different interaction modes.

2. Implementation of performance prediction algorithms for

PC/MISI user interfaces.

Significance - This implementation will illustrate the

2.2.5 Experimental Design Objectives

18

applicability of the prediction algorithms in a

microcomputer-based environment.

Implementation of the integration of all tools for both
design and evaluation of the user interfaces into a design
and evaluation system implemented on an IBM PC within the

USL NASA PC R&D project [DOMIB4].

Significance - This implementation will illustrate the
applicability of the methodology to a vast group of current

and future users who are not professional programmers.

The following are the specific experimental design

objectives identified for this research:

Design of controlled wusage e¢xperiments to gather data

pertaining to the use of the PC/PIPE.

Significance - Such data must be collected to quantitatively

cvaluate the usability of the tools.

Design of controlled wusage experiments to gather data

pertaining to the performance of individual user interfaces.

Significance - The performance metrics defined by the user
interface evaluation model will be captured via the
automated monitoring facilities incorporated into the user

interface execution environment.

19

3. Design of controlled usage experiments to determine the

accuracy of the prediction algorithms.

Significance - The prediction algorithms will be fine tumned

according to empirical data collected.

4. Design of <controlled wusage cxperiments to determine
performance improvements resulting from redesign of user

interfaces.

Significance - Monitor data regarding user performance will
be associated with specific user interface designs so that
significant changes in performance can be detected for

alternative designs. -

'

S. The use of formal hypothesis-testing and experimental design
procedures supported by automated statistical analysis of
empirical monitor data in accordance with established

standards for conducting scientific research.

Significance -~ User interface design research often suffers
from a lack of discipline in terms of experimental design.
All aspects of this research will be supported by careful

experimentation and analysis of results.
2.2.6 Evaluation Objectives

The following are the specific evaluation objectives

identified for this research:

20

Evaluation of the generalizability of the methodology across

different applications.

Significance - The methodology is designed to apply to all

interactive applications.

Evaluation of the generalizability of the methodology acroés

different user populations.

Significance - The methodology is designed to apply to a

variety of user types.

Evaluation of the completeness of the methodology.

Significance - The methodology should be applicable to a

broad range of user interfaces.

Evaluation of the objectivity of the ~various equations
and/or models which are used to quantify specific aspects of

user performance.

Significance - The research should meet its goal of

objectivity by providing automated tools. The primary focus
will be on objective metrics. However, when necessary,
subjective criteria will be identified as such along with
the recasons why objective metrics could not be formulated in

such cases.

Evaluation of the accuracy of the various equations/models

with respect to the phenomena these equations/models are

21

intended to model.

Significance - The equations/models should accurately model
the functions they are intended to model. Empirical monitor
data is used where appliqable to verify the accuracy of

equations/models.

Evaluation of the overhead associated with the incorporation
of sof tware monitoring mechanisms into the execution

environment.

Significance - The research will provide quantitative data
on the execution overhead which is incurred. by continuous
monitoring of the wuser interface activity for specific

interface/monitor environments.
Evaluation of the e¢xperiment conducted.

Significance - The evaluation process will verify that the
experiments were conducted in accordance with established

principles of experiment design.

Evaluation of the application of the methodology, wutilyzing
automated monitoring facilities, supportive equations and/or
models and appropriate statistical and experimental design
techniques to the objective evaluations of wuser interface
performance as a whole and/or of the performance of a

specific component of a user interface.

22

Significance - Because of monitor gverhead, the amount of
data c;llected. the complexity of the equations/models, and
the complexity of the statistical analysis procedures
required, the objective approach has often been rejected,
and conventional, intuitive approaches to user interface
performance evaluation has been taken. Few systems have been
extensively monitored or modeled. The proposed research
strives to illustrate the feasibility, effectiveness and,

the practicality of an objective approach to user interface

evaluation.

3. PROPOSED METHODOLOGY

In this chapter, several major concepts of design and
evaluation of user interfaces are ecxplored. These <concepts are
integrated into a preliminary methodology to achieve the desired
objectives of this research. A user interface is treated as a
virtual machine and various levels of this machine are described
in Section 3.1. A model of user system interaction is described
in Section 3.2. It will be shown that, using this model of
interaction, various types of interfaces could be designed and
implemented to accommodate various categories of users. The
implementation methodology of the proposed model is discussed in
Section 3.3 and a generalized evaluation methodology is discussed
in Section 3.4. An introduction to an automated facility using
the proposed methodology is given in Chapter 5 entitled

"Protocols for Interface Protyping and Evaluation System.”

3.1 User Interface as a Virtual Machine

It has been recommended that the user interface should be
separated as clearly as possible from the rest of the system
[BALL82, BRAN84, EIMD82, EIDMDS81]. A user interface can be
thought of as consisting of an input language for the user, an
output language for the machine, and a protocol for interaction

[FOLE80, CHIU8S]. Figure 3-1 illustrates this definition of the

23

" user interface.

INPUT LANGUAGE

78, EXTERNAL OBSERVER
/

USER 3 PROTOCOL

SYSTEM

ﬁ OUTPUT LANGUAGE

USER INTERFACE

Figure 3-1 Definition of a User

Interface

24

s

A user interface has three fdentifiable modes of operation which
could cquali} well be described as the functioms of the interface

(see Figure 3-2).

1. It u@y accept an input from the user, transform it and cause
the transformed messages to be given to the main system.

2. It may cause what is in effect a transformed message to be
returned to the user.

3. It may take a message from the main system and transform it

into a meaningful form for presentation to the user.

L
USER —— 1---J2 s SYSTEM
w
INTERFACE

1. User input to system

2. User input error
3: System output to user

Figure 3-2 Functions of a User Interface

The second mode is quite similar to the first mode except
that the input is tranformed into amn error message and the

recipient of the message is the user.

26

The identification of the operations of an interface as a
scparable p;occss leads to the idea that a separate processor
could be devoted to that process., Advancement in
micro-electronics has made it possible that a microcomputer can
be used to separate the interface from the main system. The
interface might reside in a microprocessor, along with the tools
for the design and administration of the interface. These tools
could certainly reside in a mini or mainframe computer, however,
the tools should be able to generate an interface which can
reside in the microprocessor. Arrangements of this kind isolate
the wuser from the mainframe operating system and from t_l:_e
resident operating system, thus providing the user with a virtual

machine.

This virtual machine has three layers as shown in Figure
3-3. The interactive layer, the dialogue manager layer, and the
application interface layer. The interactive layer is
responsible for the physical appearance of the user interface
including all the device interactions. The dialogue driver
manages the dialogue between the wuser and the system. The
application interface forms the interface between the user
interface and .the rest of the program. It provides the user

interface’s view of the application program.

MODMOIMAZ~. 0oMWNC

USER

v

INTERACTIVE]
LAYER

DIALOGUE

MANAGER
LAYER

PPLICATION,

INTERFACE
AYER

A

Y

APPLICATION PROGRAMS

Figure 3-3 Layers of a User Interface

a7

28

The system proposed as part of this rescarca (PC/PIPE) will

have interface specifications decomposed into these layers.

3.2 A Model for User System Interaction

A key requirement of an interface prototyping and evaluation
system is to provide a technique for the interface designer to
describe and organize the user interaction sequences. This
problem is similar to that faced in the data base management area
to allow the programmer to describe the data that is to be
managed in an application independent manner. A DBMS provides
this capability via a schema definition language which may hLe
specific to a particular system and an underlying data model.
The following subsections present criteria for evaluating the

specification technique proposed for this research.

3.2.1 Criteria for Evaluating Specification Methods

A specification of user interfaces for interactive systems
must satisfy a number of requirements if it is to be useful. The
following criteria is established for <cvaluation purposes

[WASS8S, LISK75]:

1. Formality. A specification technique should be formal, that
is, specification should be written in a notation which is

mathematically sound.

29

Constructibility. It must be possible for an interface

designer to construct specifications with less effort than

writing a program to implement that user interface.

Comprehensibility. The system developer or user trained in
the notation being used should be able to read a
specification and then reconstruct the interaction which the
specification is intended to describe. In other words, the
interface designer must be able to maintain sequences

described by others as a system matures.

Flexibility. The technique should provide the designer with
the capability of specifying a wide variety of dialogue

styles.
Portability. The technique should be device independent.

Executability. The specification should be directly
executable to ecliminate the need for writing programs to

implement the specifications.

Completeness. A full range of primitive user actions must be
supported as part of the interface specification. This range
includes actions such as backing out of a sequence
conveniently and accessing generally applicable functions

such as 'help’.

The following section presents a model of user/system

interaction which satisfies the above requirements.

30

3.2.2 The Uscr System Interaction Model

The approach to user interface development presented here
represents the first stage in an attempt to provide a
comprehensive and generalized model for the design and
implementation of user interfaces. The model is general enough
to support most of the customary techniques of interaction
provided for end wusers of informationm systems. The user
interacts with an information system through a series of prompts
to which the user responds with "commands” or "data”. Although
such interaction may seem to provide a restricted i;lterface from
a language” point of view, it has the advantage that o
programming knowledge is required by the information system user
to use it. Moran [MORA80, MORA81a] calls this "command language”
interaction because it is characterized by a command-execute
cycle. This command language can be contrasted with a
programming language, in which a set of commands is built before
execution. Command language systems can also be contrasted with
natural language systems. 1In the latter case, the variation is
the complexity of the grammar and the subtlety of interpretation.
The relatively simple nature of command language interaction

leads to a structured approach to user interface definition.

The user system interactions are viewed as dialogues between
two parties. The meaning of the term "dialogue” is intended to
include a broad range of types of exchange between wusers and

information systems. These cxchanges may be in the form of

31

character strings (using a keyboard and visual display, for
example), t;r they could equally well include the depression of
function keys, the selection of graphical objects from a
displayed image or the generation of shapes. 1In this model, the
dialogues are represented as a sequence of basic interaction
events. All interaction events have a common structure based on
common generic elements necessary for a successful dialogue. The
definition of a wuser interface is made up éf the event
definitions and transition controls which define all the possible
sequences of events. An interaction event is defined as an
occurrence in the dialogue where the system waits for am inppt
from the user. The input may be a command or data. The event is
finished when the systenxhas'finished processing the user input.
The way the dialogue proceeds to the next event depends on the
transition control actions which are considered part of the

current cvent. The entire interactiomn event is viewed as a

process which consists of four main phases (see Figure 3-4):

A. System Prompt - Indication is made by the system that

an input is expected from the user.
B. User Input - An input is provided by the user.

C. System Action and Response - An action is taken by the
system according to the user input and a response is

returned by the system.

32

D. Transition Control - A decision is made by the system

u; determine the rext interaction event.

| NEXT
PROMPT INPUT "_’(ACTION [¥ EVENT

Figure 3-4 Main Phases of an Interaction Event

The transition control simply directs control to the next

event. In this approach, all processing which occurs between
current cvent and the next event is considered as the action
the current event. An event is represented by an event table
cach element is input to a processor. The processing of
entire event is one event cycle. We will further elaborate

cach of the above phases in the following paragraphs.

A. System Prompt

the

of
and
the

on

The system prompt may be in the form of a prompting

character, a prompting message or display of a menu asking

for the selection of an item in the menu. Prompts may be

dynamically selected for presentation depending on

current style of the dialogue or the preferences of the

user.

the

end

33
User Input

The user input may be "command” or data. The "commsand”™ may
be one of the available commands from the repertoire of
system commands or selection of an item from the displayed
menu. This input could equally well include the depression
of function keys. A blank input would be valid where the

system assumes a predefined default value as the response.
System Action and Response

The system action depends on the wuser input. Various

possibilities exist; these are generically grouped as
follows:
i. Retreat - If Input = "cancel” (meaning "do not proceed

with the current interaction event”™) then
a. "next event” indicator is set; and

b. current event cycle is ended.

ii. Help - If input = "help” then
a. additional assistance information is displayed; and

b. current event cycle is ended.

iii. Check - Input is checked. If errors exist and mno
automatic error correction exists then
a. errors are reported; and

b. <current event cycle is ended.

34

iv. Call application - Related application / database

routine is called to process the users request.

The terms “"cancel”, "help” and “"next ecvent” are generic
names. The above ordering is important for tramnsition
control actions. Any one of Retreat, Help, or Check may
abort the normal «cycle. Retreat precedes any input
processing so this enables the user to interrupt an event
which is not desired. It sets the "next event” index to one
other than the current or the one which would have been
normally set by Transition Control. Help does not change
the "next event” index but it does cause a repeat of ;ie
"current event” cycle. To the user, Help will appear as a
help message followed by a repeated prompt. In the case of
errors which the system is not able to correct, Check would
cause the display of an error message followed by a
repetition of the "current event” <cycle similar to Help.
Note that Help and Check both allow the completion of the
current event cycle, but do mnot prevent the user from

exiting the current cycle.

35

Figure 3-S illustrates the event cycle.

RETREAT
EVENT

| HELP

MESSAGE "HELP" "CANCEL"

proMPT ¥ inPur M creck M acTion P 'E%LT

ERROR
MESSAGE "ERROR

"HELP"™ and "CANCEL"™ are input tokens

ERROR is a condition

Figure 3-5 The Event Cycle

36
Transition Control

Transition Control directs the transfer to another or the
same event. Strictly speaking, this information is not part
of the event definition, but rather the arc of a
conversation graph if we view the event as a conversation
graph [HAGG83]. However, it is often convenient to handle
information associated with an outgoing arc as an integral
part of the predecessor node. The Transition Control allows
the selection of the next event based on the structured
programming control primitives (sequence, case, do-while).
The next selection could be based on any one of Eie

following primitives (see Figure 3-6):
i. "Sequence” - predefined order of the events.

ii. "Select” - Any one of the predefined set of events

based on a given control value.

iii. "Conditional-transfer” - pre-set to amn e¢vent when a

given control condition occurs.

EVENT 1§

_‘.{EVENT 2

EVENT 3

s

(1) Sequence

"a’ ¢‘ EVENT A
" .‘ EVENT B
EVENT x [P |
“e” 4{ EVENT ¢
2t bl EVENT 7
(ii) Select
TRUE ‘
g EVENT 1 EVENT 2
FALSE
(iii) Conditional-Transfer

Figure 3-6 Transition Control Actions

37

38

The above control primitives also relate to different modes
of interaction and different schemes for defining commands and
related data or arguments which are common in wuser system
interaction. The following three scenarios represent three

common occurrences in command languages.

1. The system prompts for one data input, then for another. This
case is implemented with the use of two events. The first
event will prompt for the first data element and will have a
pre-set "next” selection identifying an event prompting for
the second data element. This way a "system guided” [GUEDSO,
MILL77] dialogue could be effectively implemented. -

2. The system asks the user for a command, then for its
arguments. This case is implemented with the use of two
events. The first event prompts the user for the name of a
command. Then, through the use of the "select™ primitive,
control passes to the e¢vent which prompts the wuser for the
arguments of the particular first event. This way a

"user-guided” [GUED80, MILL77] dialogue is implemented.

3. The input required by the system is comprised of a list of
arguments of indefinite .length. This is implemented with one
interaction event with a “conditional-transfer”™ primitive.
The event has a pre-set next sclection to itself. The end of
the list igs indicated by the user by input of a special value

representing the termination command.

39

In the above examples, the first example illustrates the
case where a wuser is led through a series of requests for data
(arguments) which end with some processing. The second example
illustrates the conmmmand driven mode, and the third is a
combination of both where the system prompts for arguments, by
repeating the same interaction event, until a particular command
(i.e., the special termination value) causes the dialogue to move

to a different event.

3.3 Implementation Methodology

This section discusses the implementation methodology fgr
the proposed interaction model. Event descriptions are
represented in a tabular fonp. An interaction event can be
described as an ordered tuple:
<EVENT_ID; Prompt; Input (Default); Retreat; Help; Check; Action;

Transition Control>

EVENT_ID 1is an identifier wumnique to each event. Each other
clement contains an index to information pertaining to the
relevant phase in the event cycle. The informatiom itself is
organized in sets. Each set contains information of the same type
or information which belongs to the same phase. Each member of a
set may be referred to by entries imn one or more event
descriptions. Each set member is identified by a unique (within
the set) identifier. Thus, the entries in the event description

tuples become references to set members. Each reference is a

40

pair <Set_ID; Member_ID> and cach member in a set is a pair of

the form: <Member_ID; Information>.

The distinction between the event descriptions, which
contain the dialogue "logic”, and the actual information about
text, processing definition, checks, etc., allows the two to be
developed separately. This separation allows for a quick
skeletal implementation which can be augmented later, for example
by adding input checks and help messages. This feature provides
the designer with support for prototyping. Also, the same event
may be implemented with various versions of text (prompt, help
and error messages) identifying levels of interfaé‘;.. A flag Tn
each user’s profile indicates which interface level s
appropriate to tﬁat user. This flag can be changed either by user
choice or by an algorithm in the system based on a pre-specified
criteria, thus providing flexibility and customization of
dialogue. The needs of different levels of the wuser population
could be satisfied by the ability of the system to change ecasily

with evolving levels of user knowledge.

3.4 Evaluation Methodology

In this section, a generalized evaluation methodology is
proposed for evaluating user interfaces for information systems.
A generalized evaluation may be contrasted with a specific

evaluation which is tailored to a particular purpose or

41

situation, such as the evaluation of an 1nformation system to
determine its wutility in a particular working enviromnment. A
generalized evaluation focuses on the generic properties of a
user system interface rather than on the idiosyncrasies of
particular commands. A generalized evaluation attempts to address
fundamental user interface issues and is thus applicable to a
variety of user interfaces. These issues include questions such

as:
(1) What range of tasks can a user perform with a system?

(2) How ldng does it take a user to learn how to use a system_go

perform a given set of tasks?
(3) What types of errors are made and what is their frequency?

(4) How long does it take a user to accomplish a given set of

tasks using the user interface?

A benefit of using a generalized evaluation methodology is
that a data base of consistent information about user interfaces
could be collected over a period of time. This information would
provide a standard for interpreting the results of any new
investigation, a «crtical factor missing from virtually all
existing evaluation studies. The methodology proposed herein
evaluates user interfaces from the viewpoint of the performance
of their users and will provide for the generation of a valuable

user interface performance data base of objective measures.

42

3.4.1 A Generalized Evaluation Methodology

A general methodology applicable to the monitoring and
evaluation of any user interface for a computer based information

system is composed of the following phases [DOMI78, BORM78]:
(1) Determine the monitoring/evaluation objectives.

(2) Determine the specific parameters to be monitored initially

based upon the overall objectives.

(3) Design and implement the monitoring facility into the

system. -

(4) Design and implement the data validation procedures to

validate the monitored data.

(5) Determine the data analysis tools to be used for analyzing

the monitored data.

(6) Design and conduct the monitoring experiments to collect the

data to be analyzed.
(7) Perform data validation on the monitored data.

(8) After the experiment has been completed, perform the data
analysis making evaluations and drawing conclusions, as

appropriate.

(9) Identify user interface improvements and enhancements as

implied by the results of the anmalysis.

{10)

(11)

(12)

43

Identify monitor improvements and enhancements as implied by

the resultgs of the analysis.

Identify experimental design improvements and enhancements

as implied by the results of the analysis.

Incorporate all identified improvements and enhancements and

repecat the cycle from step 6.

Figure 3-7 presents the above phases, illustrating

parallelism where appropriate.

[

44

MONITOR
IMPROVEMENTS
2 12
DESIGN AND USER INTERFACE :
IMPLEMENT IMPROVEMENTS p——r
r—b SOF TWARE
MONITORING
] 2 FACILITY
DETERMINE DETERMINE
MONITORING PARAMETERS
OBJECTIVES |—p{ TO BE L) INFORMATION SYSTEM
MONITORED
INITIALLY 4
DESIGN AND
IMPLEMENT SOF TWARE SYSTEM
|y DATA A 4 »{MONITOR STAFF
VALIDAYION
PROCEDURES + ?
MONITORED
DATA
9
5
SUGGESTED
DETERMINE USER
{{DATA ANALYSIS INTERFACE
TOOLS ‘ IMPROVEMENTS
6 7 ;77 8 V¥ *? 10
DESIGN AND PERF ORM ERFORM DATA SUGGESTED
CONDUCT |) |OATA | JANALYSTS AND MONITOR
AP MONITORING VALIDATION EVALUATION IMPROVEMENTS
EXPERIMENTS
11
12 SUGGESTED MONITORING
EXPERIMENT EXPERIMENT
EXPERIMENT IMPROVEMENTS {—p| STAFF

IMPROVEMENTS ¢ l

Figure 3-7 User Interface Monitoring and Evaluation Schematic

(Adapted from Dominick and Penniman [DOMI79])

45

The methodology proposed here will allow interface
developers to evaluate user interfaces from the viewpoint of the
performance of their users. In developing this methodology the

following generic criteria will be used:

- Objectivity. The methodology must not be biased in favor of

any particular user interface structure.

- Thoroughness. The methodology must consider the multiple

aspects of an interface usage.

- Ease of Use. An interface developer/evaluator must be able
to evaluate the performance of an interface, identify
problem areas that exist, redesign the interface wusing the
methodology, and <cycle through the interface evaluation

process, as necessary.

The methodology proposed for this research will allow the
interface developer to seclect specific evaluative data measures
from an available list of data measures. A software monitor will
automatically be generated and incorporated into the interface
designed. The monitor will collect the specified data measures at

execution time on the following levels:

(1) Operation (or command) level
(2) Task level

(3) User session level

46
(4) Usage period level.

This capability will allow the interface developer to
iteratively evaluate and improve a user interface. It will also
allow the interface developer to compare altermative interface
designs. To compare different types of user interfaces, there
must be a common ground on which to base the comparison. For this
purpose, tasks need to be identified. In the context of
Information Storage and Retrieval (IS&R) systems, what is
constant across all wuser interfaces is the information storage
and retrieval tasks they permit their users to accomplish. There
are two primary functions that an end user of an IS&R sys£;m
performs, namely, search and output. Although many other
capabilities may be provided, e.g., online help and tutorials,
computations, manipulations, statistical amnalysis, graphical
analysis, data base definition, data base maintenance (adding,

deleting, updating), etc., the basic functions are those of data

base search, retrieval, and output.

Various tasks may be defined by the evaluator for analysis,
for example, various types of free text searching, selective
field searching, and boolecan searching. Task definitions will
allow the characterization of sequences of scarches and output
operations into task-level units of analysis. The definitions of
tasks may be changed, added to, or deleted from at any time as
needs demand. A taxonomy of tasks must be identified. The

functionality of a user interface is measured in terms of the set

47

of tasks in this taxonomy, by assessing how many of the tasks the
user interfaces allow users to perform. Comparison between user
interfaces concerning the time to perform a given set of tasks,
types of errors and their frequencies, learning rates, and the
like must be based on tasks that all compared interfaces allow

users to perform.

The collection and analysis of data will be provided by the
PC/PIPE evaluation component. At interface execution ¢ime, a
time-stamped log of interaction events will be crcated. From this
log, an interface developer/evaluator will be able to extract
human performance data indicating "ease of learning”™ and "case of
use” of the interface. Viewing these criteria as contributing to
the ecffectiveness of an interface is consistent with work
performed by others in interface evaluation [LIND8S, REIS84,

GOOD82, ROBES83].

Within these contexts, "ease of learning” is defined as the
amount of training time required of members of the user community
in learning the user interface to reach an established
performance criteria (to be defined in terms of speed of wusage
and number of user errors made), and "casc of use” is defined as
the amount of interactive time needed with a user interface (once

learned) in order to perform successfully a given set of tasks.

48

3.4.2 Factors Affecting Easec of Learning

We can classify factors contributing to the ecase of learning
a user interface into properties associated with the individual
user and properties independent of the user. Properties

associated with the individual user are:

(1) Similarity of the learned interface to other known

interfaces; and
(2) Retention of similar interfaces.

For ecach interface component, there is a positive or negative
learning influence determined by the similarity to or difference
from interface <components that the user has previously learned.
The degree of retention measures the effect that past exposure to

other interfaces has on learning a new interface.
Properties associated with the user interface are:

(1) Availability of a complete and accurate user’s manual that

aids in accessing the system;

(2) Existence of online assistance commands that increase the

user’'s productivity;

(3) Existence of diagnostic messages that help in error

recovery;

49

(4) Existence of prompting messages that aid :im reducing the

number of input errors;
(5) Syntactic homogenecity of the command language;
(6) Semantic homogeneity of the command language;
(7) Use of abbreviations allowed;
(8) Easy to remember command names and abbreviations; and
(9) Complexity of the interface.

Complexity of the interface is a major variable associatgd
with learning of a new interface. To determine the learnability
of an interface, we need to objectively measure its complexity.
The complexity factor offers the greatest potential for
developing predictive measures of wusability [REIS383]. One
measure of interface complexity is the number of distinct
commands provided by an interface. An obvious hypothesis to
consider is that the interface with fewer commands should be
faster to learn [HALS77, ROBE83]. The point missed by this
hypothesis is that commands are not useful in isolation; rather
they are used in the context of methods or proced\ures to
accomplish given tasks. The other hypothesis is that learning is
related to the procedural complexity of a command language. Onmne
method to approximate the procedural complexity of am interface
is to compute the average number of steps in the method for

accomplishing a representative set of tasks, such as running a

50

benchmark [CARDS8O, CARD83, ROBES83]. The Keystroke-Level :nodel
[CARD80] provides a simple unamabiguous set of steps to count
physical operations. However, the length of a method in physical
operationé can be a misleading indicator. For example, a method
requiring a user to type "select” followed by return is not three

times more complex than an abbreviation of the command requiring

the wuser to type only se”. We <can see that procedural
complexity has more to do with mental ~chunking” [DAVI84] of
physical steps 1into coherent fragments than the physical steps
themselves. This notion of procedural complexity as determined by
mentally defined chunks is an instance of the "zeroth-ordex
theory of learning” [CARD83] which states that learning time is
proportional to the number of chunks of information that must be

learned. To make this theory operational, the evaluator must be

able to specify what the chunks are.

3.4.3 Factors Affecting Ease of Use

In a manner similar to the factors contributing to ecase of
learning, factors contributing to the ecase of use of a user
interface are classified into properties associated with the
individual user and properties associated with the wuser

interface. Properties associated with the user are:
(1) User’s past experience with the interface;

(2) User’s ability to recall how to use the interface;

(3)

(4)

(1)

(2)

(3)

(4)

(5)

(6)

(1)

(8)

(9)

(10)

(11)

51

Frequeacy of use of the interface; and

User’'s evaluation of his past experience with the interface.

Properties associated with the user interface are:

Tolerance of user input errors such as miror spelling or

typographical errors which can be recognized as such;

Cancellation of previous input so as to restart from a

designated point in dialogues;

Existence of meaningful diagnostics to aid the user in error

—

‘recovery;

Existence of meaningful prompting messages to aid the wuser

in reducing user input errors;

Number of steps required to correct an error;

Use of default options to reduce user responsec time;

Use of function kefs to reduce the number of keystrokes;
Response time below a pre-specified or expected limit;
Variations in system response time for equivalent tasks;
Availability of abbreviations for command names;

Number of steps required to accomplish a task wusing the

interface: and

52

(12) Complexity of the vser interface as discussed in Section

3.4.2.

3.4.4 Iypes of Data Measures

Two types of data measures are defined here. A raw data
measure and a generated data measure [DOMI78, BORM78, MICH81]. A
raw data measure is defined as a data item obtained directly from
a monitor base. A generated measure is defined as a data measure
which is generated in some manner, rather than being collected
directly by a monitor. Generated data measures can be either
first order generated mecasures or second order generated
measures. A first order generated measure is a data item which is
constructed via computations and/or manipulations performed on
one or more raw monitor data items. A second order generated
measure is a data item which is constructed via computations
and/or manipulations performed on first order generated measures

and/or second order generated measures.

The identification of variables applicable to user interface
evaluation is of prime importance. The general categories of

potential data measures which are relevant to this study are:
1. Interface usage profile variables;
2. User error and error recovery variables; and

3. User success and user satisfaction variables.

53

Within each category, generic variables will be identified
that do not depend upon any particular user interface or
information system, but rather are applicable across a wide range
of user interfaces and information systems. The measures
computed by the PC/PIPE will be flexible and extension facilities
will be provided which will allow an interface
experimenter/developer to specify procedures for computing

measures which are not already provided by the system.

3.5 Summary of Proposed Methodology

This section summarizes the proposed methodology. The first
ma jor component of the methodology is that a wuser interface
should be separated as much as possible from the rest of a
system. Within this context, the user interface is treated as a

virtual machine and its layers are described in Section 3.1.

The second major component is a technique that allows the
interface designer to describe and organize the user interaction
sequences. This technique should satisfy the <criteria of
formality, constructibility, comprehensibility, flexibilty,
portability, executability, and completeness, as described in
Section 3.2.1., Based on these criteria, a model of wuser system
interaction is described in Section 3.2.2. The user system
interactions are viewed as dialogues between two parties. These
dialogues are represented as a sequence of basic interaction

events. The definition of a user interface is made up of the

54

cvent definitions and tramnsition controls. The transition
controls allow the selection of the next event based on the
structured programming control primitives (sequence, case,
do-while). It is shown that, using this model, various types of
interfaces <could be designed and implemented to accomodate

various categories of users.

The implementation methodology for the proposed interaction
model is discussed in Section 3.3. The distinction between the
event descriptions which contain the dialogue 1logic, and the
actual information about text, processing definition, checks,
etc., provides the designer with the rapid prototypi;k

capability.

The third major component of the methodology is to provide
the interface developers with a set of tools for monitoring and
evaluation of their designed wuser interfaces. Section 3.4
addresses this component. A generalized evaluation methodology
is presented in Section 3.4.1, and various evaluative factors and

metrics arec presented in Sections 3.4.2 through 3.4.4.

4. BACKGROUND AND STATE-OF - THE - ART

Over the past decade, we have heard much lore about what
makes information systems easy to use, and about pros and coms of
various interaction devices and techniques. There have been a few
attempts to summarize, in a structured way, the design philosophy
and accumulated knowledge and experience [MORAS1D, RAMSS83,
REIS83, BORG84]. This chapter summarizes studies and research
efforts related to user/system interface issues. Section 4.1
overviews research performed on users of information systei;l
Section 4.2 provides a survey of specification techniques used
for the desigﬁ of user interfaces. Section 4.3 provides an
overview of analytical tools developed or being developed for the
evaluation of user interfaces. Work addressing users’ conceptual
models and mental models 1is described in Section 4.4 and,
finally, Section 4.5 provides an overview of resecarch activities

addressing the design and management of user interfaces.

4.1 User Rescarch in Computer Science

User research in computer science is still in its infancy
[BORG84]. Statements about wusers and their behavior have
typically been by-products of research on library users. In
general, ideas about the characteristics of computer users do not

come from dedicated research but from designers’ personal

§S

56
experiences and beliefs [DAGWS3].

Moran [MORA81b] describes four approaches to "an applied
psychology” of the wuser, which lie along a continuum from
empirical to theoretical. These are: 1) the experimental
approach, 2) the features approach, 3) the factors approach, and

4) the calculational approach.

In the pure experimental approach, methods of experimental
psychology are used to evaluate the specific system under
development. No attempt is made to develop any theory or deep
understanding that might help in the design of the next system.
The typical approach 1is to comstruct a general interface
simulator. However, this simulator not help with another expense
of this approach, namely, that it requires multiple subjects and

multiple trials to get reliable measures.

The features approach attempts to discover the general
design features of systems that affect wuser behavior. It is
expected that these general design features can then be wused to
formulate design guidelines. The factors that affect user
behavior are quite complex and interact extensively with one
another. This approach is clearly better than the experimental
approach, but it still has major shortcomming. It, too, leads to
a repcated focus on low-level issues, such as selection of an
input device, but for different reasons. Further, by

concentrating on features rather than principles, we often

57

perform research that bas limited applicability to the neaxi

generation of technology.

In the factors approach, a resecarcher attempts to determine
a pattern of psychological factors that are relevant to user
behavior, perhaps through mutivariate statistical analysis
techniques. Williges and Williges [WILS82] show application of
this approach by using polynomial regression and response surface
methods to study the patterns of effects of system response time,
display rate, keyboard echo rate, and keyboard buffer length on

user performance in a personnel records task.

—

The calculational approach involves the development of
explicit information-processing models of wuser behavior in
particular tasks. The Keystroke-Level Model [CARD80, CARD83] is
an information-processing model that predicts the error-free
performance times of expert users employing interactive command

languages.

Penniman and Dominick |[PENN80] reviewed the literature to
identify data regarding user’s characteristics and information
use patterns. They found only a minimal number of studies
containing hard data and even fewer containing any kind of

behavioral measures.

Although one should generally be skeptical of questionnaires
and interview studies, these are often the only direct measures

available to reseachers. Dzida, et al. [DZID78] provide useful

58

insights into wuser perceived problems of usability. Based on a
factor analysis of questionnaire responses from a reasonably
large group of wusers, the authors found seven major usability
factors: 1) self-descriptiveness of the system, 2) user control,
3) ease of learning, 4) problem-adequate functionality, 5)
correspondence with user’s expectations, 6) flexibility in task

handling, and 7) tolerance for user errors.

Eason [EASO80] argues that the flexibility of task handling
is the most fundamental type of flexibility. He distinguishes
"closed” tasks from "open” tasks. A closed task is "one in which
the alternative states of input and output variables are wérl
understood and will fall within a predictable range” [EASO80].
The properties of an open task may vary greatly, often as a
result of influences outside the user’s control. Eason contends
that we have not been very successful in designing systems to
support open tasks. He also notes that dialogue needs vary
strongly with the degree of openness and the frequency of
occurrence of the task. Open, infrequent tasks require a
particularly flexible, adaptive user interface. With a different
orientation, Nickerson |[NICK81] presents a list of user
frustrations based omn informal interviews: wrong functiomnality,
limited accessibility to the system, start-stop hassle (logon/off
protocols etc.), system dynamics and responsec time, work-session

interrupts (system crashes, etc.), training and user aids,

documentation, command languages, consistency of system behavior,

59
and the user’s conceptualization of the system.

The problems associated with poor user interface design are
widely recognized and discussed in the literature. Hayes, et al.
[HAYE81] present a fairly detailed, realistic example of dialogue
with a mail system. In this example, many of the difficulties
arise from the extreme literalness and lack of flexibility of the
user interface. They suggest a particular type of dialogue
front-end, oriented primarily toward command language dialogue,

as a possible solution.

4.2 Survey of Specification Techniques —-

Much of the work in this areca has been concerned with static
programming languages rather than interactive languages
[JACO83a]. In a static language, an entire text is presented as
input before any processing begins or any output is produced;
then, all the outputs are produced together. Processing of the
text is affected little, if any, by previous inputs. While in the
interactive language, the input can be described as a series of
brief texts, where the processing of current input generally
depends on previous inputs. Equivalently, one long text is imnput
and the computer system takes actions and produces outputs at
various points during the input, resulting in a dialogue. Most
specifications for both static and interactive 1languages have
been based on one of two formal models: Backus-Naur Form (BNF) or

state transition diagrams. Each of these methods provides a

60

syntax for describing legal streams of user inputs. In order to
specify user interfaces, the techniques must be modified to
describe the system actions as well and their secquence with

respect to the user input.

4.2.1 State Transition Diagrams

As early as 1969, Parnas [PARN69] suggested state tramsition
diagrams to describe user interfaces for interactive systems. He
differentiates ~"terminal state” from "complete state” in a way
analogous to the scparation of syntax from semantics in other
specifications. His paper contains some simple examples and does
not address how the scheme would work for more complex real world
systems. A transition diagram has a labeled node which indicates
an initial state, possibly multiple terminal states, and possibly
multiple output states. The directed arcs are labeled with a
possible input string followed by the system response to that
string. Folley and Wallace [FOLE74] also advocate the use of a
state diagram to represcent the user interface. They too do not
examine the problems of complex real-world systems. Feyock
[FEYO77] described transition diagrams in the context of computer
assisted instruction and help systems. Wasserman and Stinson
[WASS79], like Feyock, emphasized that the system response on the
arc may involve the invocation of another transition diagram and
are more attentive to the details of interfacing with a

procedural language to carry out computations.

61

The MIMPS interactive computer language specification wuses
nonterminal symbols extemnsively and gives a precise deterministic
procedure for interpreting diagrams containing them [MIMP77]. The
specification is noteworhty in that the actions associated with
its transition comprise a complete specification of the semantics

of the MMPS language.

Singer [SING79] uses state diagrams in the <context of an
interactive Help system for Pascal. His notation is more complex
and difficult to understand. It wuses separate diagrams for
nonterminal symbols and a global data structure which can be set
by arbitrary semantic domain action:. By examining the valuesqi'n
this data structures, and not by directly looking at input
tokens, transitions can be selected. Hence, a transition
involving receipt of a particular token 1is described by two
transitions in his notation - ome to read it into the data

structure and one to test the value just stored.

In the Taxis system [MYLOS8O, BARRS1], the overall
organization and structure of dialogue and process control for a
particular interactive information system is achieved wusing
"scripts™. A script can be thought of as a known plamn to
accomplish some goal. Each script is represented wusing a
transition net which is based on a simplified version of Zisman’s
augmented Petri mnets [ZISM77]. Scripts provide facilities for
modeling decision making, concurrency, and synchronization,

rather than representing user interfaces.

62

Ling [LING82)] describes designing data entry programs using
state diagrams as a common model. Each data entry program
supports one type of transaction. A compact mode]l was cbtained by
limiting the set of states to thos¢e minimally required for
representing the interface conditions. There are two types of
conditions: those which occur after the user enters a field and
those which occur when the user attempts to output a transaction.
These observation lead to model of 20 states: one initial state,
one final state, 8 states representing the logic for a
generalized data field, and 10 states representing the end of
transaction logic. The state diagrams were checked visually
against the specified program behavior. A more rigorous approach
to verify the logic was taken to construct a formal correctness

proof for the state diagrams.

IBM’s chief scientist, Dr. Branscomb [BRAN84], also
advocates that one should define the interface as a set of states
and transitions. To a great extent, the IBM Audio Distribution

System [GOUL84] follows the priniciples advocated by Branscomb.

The wuse of state diagrams does not provide a totally formal
description of the semantics of state transitions and wusually
does not include a specification of the screen layout. In
addition, the specification is given by using a <concrete syntax
which requires the definition of many details not relevant in an

early or prototyping design phase.

63

4.2.2 BNF and Formal Languages

Formal languages and automata have long been a part of wuser
interface. design. One of the ecarliest attempt was Newman’s
Reaction Handler [NEWM68). More recently, a great deal of work
has been performed in using formal languages to characterize and

analyze user interfaces [BLES82, WASS81, REIS81, REIS84].

Resiner [REIS81] provides an e¢xample of how BNF can be wused
to describe a wuser interface. Her approach does leave out che
semantics of the wuser interface - the system actions and
responses. She describes the "action languages” for two versions
of an interactive graphics system intended for wuse by
nonprogrammers. She then shows how these 1languages can be
described in terms of a production rule notation. Particular
emphasis is given to actions the user has to learn and remember
(i.e., cognitive factors). She then presents predictions about
user performance based on the formal description and exploratory

results of testing some of the predictions.

Shneiderman [SHNE82] proposes a modified form of BNF in
which each nonterminal symbol may be associated with either the
computer or the user. The human-related BNF grammar is used to
parse the input while the computer-related BNF grammar is used to
generate the output. These grammars contain labeled nonterminals

to indicate the party that produces a terminal string.

64
4.3 Analytical Studies of User System Interaction

In academia and in industrial research, some researchers
have begun to develop analytical tools to determine the ease of
use of wuser interfaces. An analytical tool does not measure the
user behavior directly, but it predicts what would happen if
users were interacting with a system. This section describes
some analytical tools that have been or are being developed. The
studies to be disussed have a number of different goals. Most are
attempts to aid system design. None of the tools have as yet

been tested for ease of use.

—

Embley, Lan, Leinbaugh and Nagy [EMBL78b] propose a model to
compare program editors from the end user’s point of view. In
their model, the total time to perform some "unit™ task consists
of two main factors: the time to key-in the commands and another
factor. The other factor consists of "think time” and computer
response time. The "think time” is the time for the user to
decide what to do next. The time to key-in commands is taken as
the number of keystrokes times the average time per keystroke.
The time for a task is simply:

T.task = m*T.c + n*T.k

where m is the number of command respomse pairs

n is the number of keystrokes

T.c is the think time per command and associated computer

response

T.k is the time per keystroke

65

Using parameters of T.¢ = 5 seconds and T.k = 1/2 second, the
authors found statistically significant differences between two

editors.

Card and Moran [CARD80] view their keystroke level model as
a design tool. The model is intended to predict task time, for
expert users, on routine tasks. The central idea behind the model
is that the time for an expert to do a task on an interactive
system is determined by the time it takes to perform the
keystrokes. The precise method (sequence of commands) must be
specified and no errors are expected. Like the Embley model, the
keystroke-level model <counts keystrokes. However, the keystroi;
model is very clearly and explicitly a model of the wuser. It
contains four physical-motor operators: K (keystroking), P
(pointing as with mouse), H (homing, moving the hands to the
appropriate physical device), and D (drawing straight lines
segments, using the mouse). In addition, there is one mental
operator M for Mental Preparation (e.g., deciding which command
to invoke). There is also an R operator for system response time.
The time to execute a task is the sum of the times for the

relevant parameters.

The Keystroke-Level model is severely restricted in the
sense that the user must be an expert; the task must be a routine
unit task; the method must be specified in detail; and the
performance must be error free. Additionally, it predicts only

one aspect of the total user-computer interaction, mnamely the

66
time to perform a task.

The work of Reisner [REIS81] is an attempt to provide a
predictiye tool to compare alternative designs for ease of use,
and to identify design choices which would cause users to make
mistakes. Her action language model views user actions at an
input terminal (keying, moving a joystick, pressing a button) as
a language. It uses a production rule mnotation. Two criteria
were used to analyze designs in these grammars:

(1) length of sentences to be compared, and

(2) the number of extra rules in the grammar.

The latter was taken as an indicator of inconsistency in the
language. In addition to the above two criteria, other
possibilities were noted but were not explored. These included
the number of different terminal symbols (words), the number of
alterations in hand or eye movement, the total number of rules
needed to describe some subset of the language, and qther

linguistic measures of sentence complexity.

4.4 Rescarch on User Models

Application of cognitive psychology has been increasingly
useful in the area of software development and especially in the
design and evaluation of user interfaces. However, confusion in
terminology runs rampant throughout the literature in this area.
We provide here some definitions (due to [BORG84a], [NORMS2],

[KIERS82]):

67

* Cognitive model - A model, typically built by a cognitive
psychologist, that attempts to describe the mental
processes by which humans perform some task. The usual
purpose of such a model is to advance our understanding

of human behavior.

* User conceptual model - A model, typically built by a
designer of a system to provide the user an appropriate
representation of the system (appropriate in the sense of
being accurate, consistent and complete). This model is

not necessarily the same as actual system behavior.
—

* Mental Model - A model, evolvi"ng in the mind of a |user,
representing the structure and internal relationships of
a system, as the user is learning and interacting with
the system. This is not a formal model and no one
"builds” it. Mental model can be analogical, incomplete,
and sometimes very fragmentary with respect to their

understanding of how something works.

4.4.1 Cognitive Models

Notable contributions in this area have been made by Stu
Card and Tom Moran in collaboration with Allen Newell [CARD83].
Their work involves several different models with different
purposes and possible arecas of application. The Model Human

Processor depicts certain basic processes (e.g., perceptual,

68

cognitive, motor, and storage of information in perczptual and
long term memory) as occurring in discrete cycles. These cycles
take time and the time differs for the various processes. Three
versions of the model are defined: one in which all the
paramecters listed are set to give the worst performance
(Slowman), one in which they are set to give the best performance
(Fastman), and one set for a nominal performance (Middleman).
Examples are given of the model’s use to describe several types
of tasks: perception, motor skill, simple decisions, learning and
retrieval, and problem solving. Clearly, this model 1is too
simplified to do justice to the richness and subtlety of the
human mind, but it does help to understand, predict, and even to
calculate human performance relevant to human-computer

interaction.

Another model, called the GOMS Model, attempts to model
human problem solving behavior in terms of goals, operators,
methods, and sclection rules. It has been specifically applied
to the modeéling of the behavior of expert users of a text-editing
system. The GOMS approach is highly task-specific and involves a
considerable research investment. The model requires information
about expert performance of a task. Goals must be specified which
define states of affairs to be evaluated. P_erceptual, motor, and
cognitive acts are described as operators. Methods need to be
established to accomplish a goal. Selection rules are then

applied to select a method. The cost of obtaining the estimates

69

of all different operators and selecticn rules increases at a
finer grain of analysis, because more data are required for a
given level of robustness as the observation and measurement

problems increase at the lower level. Kieras and Polson [KIER82]

have proposed an extension in which the wuser’s task
representation is distinguished from the user’s device
representation. The mapping of wuser intention to specific

actions in which the user manipulates a device 1is defined in
terms of production rules. They propose that the complexity of a
particular system, from the wuser’s perspective, might be
measurable by measuring the depth of the goal hierarchy and the

number of production rules in the model.

4.2.2 User Conceptual Models

Recently, the idea of a "user conceptual model” of a system
has begun to be viewed as a formal entity for designing wuser

interfaces.

Scveral rescarchers [MODRA81a, MAYES1, RUMMS1, GENTS82,
FOSS82] have found that people can learn and apply conceptual
models, though these conclusions are not without some constraints

and limitations.

Mayer [MAYE81], in a series of studies, has shown that a
concrete conceptual model aids in learning the BASIC programming
language. The model appears to serve as an "advance organizer”

for the material to be learned, but it works only if the model is

70

presented before the specifics of the material, not after.

4.2.3 Mental Models

Much of the work on mental models and interactive systems
has stemmed from the premise that the user possesses a mental
model of the system and has explored the characteristics of that
mental model [BORG84]. The common approach is to begin without
this assumption and attempt to show the existence of the model.
Moran [MDRA81a] defines the user interface as consisting of
"those aspects of the system that the user comes in contact with
- physically, perceptually and conceptually.” He concludes that
"to design the user interface of a system is to design the user
model.” It is a dominant opinion among many resecarchers that the
system design imposes the user model ([GAIN81], [MDRA31a],

(NORMB1], [YOUNS1]).

The majority of the work in user models deals with the
application of text editors [DOUG82, FOSS82, HALA82, LEWIS82]. It
was found that subjects induced a typewriter model for the text
editor even though such a model had not been explicitly provided.
The patterns of errors and types of misconceptions about system
behavior were <consonant with the typewriter model in both
studies. Moran [MORA81a], Norman [NORMS81], and Young [YOUNS81]
distinguish between giving the user a conceptual model and the
system which can be assimilated and forcing the user to infer or

induce the system model. In general, it is ecasier to assimilate a

71

model than to induce one. Moran [MDRA81a], Normau [NORME1], and
Rumelhart [RUME81] agree on the importance of providing an

explicit and consistent model to the user.

Carroll and Thomas [CARR82] <claimed that the activity of
learning to use a computer system 1is structured by metaphoric
comparisons. For example, the metaphore "a text editor is a
typewriter” could be spontaneously referred to during the early
learning period about text processors. Halasz and Moran [HALAS82]
contrast conceptual models with metaphoric, or analogical,
models. By the latter, they mean suggestive but typically
incomplete descriptions referring to near-neighbor domains, or to
compositions of these. In contrast, their view of a conceptual
model is intended to <cover highly accurate and arbitrarily
complete descriptions (the level of detail matches the needs of
the target wuser) usually in some abstract format, like a
flow-chart or a graph. They object to using a single analogical
mapping to a computer system. They propose constructing an
abstract model based on system behavior. Their views are
supported by du Boulay, O’Shea and Monk [DUBO81], Moran
[MDRA81a], and Young [YOUN81]. They also endorse the use of

metaphors to explain smaller units of the system’s operation.

Gilfoil [GILF82] studied user’s cognitive schema as they
learned to use a text editing system. They were given a choice of
a menu-driven or command driven interface and the option to

switch between them. All users began with the menu-driven style

72

and gradually switched over as they became more skilled. As they
began to switch over, the time per task dropped and the numbr of
semantic errors and the frequency of asking for help dropped
drammatically. Gilfoil concludes that user systematically develop
a cognitive structure for the task environment. This finding
follows other cognitive research (e. g., [MAYES1, SIMDSO,

CHAS73]).

4.5 Survey of User Interface Management Systems

The recent upsurge in human/computer interaction research
has brought an interest in developing tools for the design ‘29
implementation of user interfaces. Most of these tools have been
developed to support graphical interaction and are applicable in
graphics environments. They could well be considered as graphics
utilities. This section surveys some of the recent developments

in the user interface management area.

Olson [OLSO83a] describes research into the automatic
generation of interactive graphical systems to facilitate faster
and cheaper generation of interactive user interfaces. This work
has not progressed beyond the design stage. He observed that it
is the design aspect of program creation which is suited to
automatic program generation. This is because of the high cost
in time and effort of hand-coding and the increased reliability
of automatically generated software. He uses Pascal procedure

definitions for the characterization of interactive commands in

73
the application program.

Kasik [KASI82] describes a system called TIGER which takes
care of the bookkeeping associated with screen layout, interrupt
handling and the definition of interactive dialogue sequences.
The system has at its core the language TICCL, which permits an
applications programmer to concentrate on the 1logical functions
which the programmer wishes to perform rather than the low-level
physical steps which must be taken to accomplish the task. TICCL
can be used to describe algorithms which combine graphical
primitives in response to user interactions as well as to define

. . -
user 1nteraction sequences.

To the extent TICCL is wused for constructing graphical
primitives for wuser interactions, it is more advanced than the
table driven menu system of the User Interface Management System
(umMs) [BUXT83a]. UIMS has two menu components. The first
component is a set of tools to support the design and
implementation of interactive graphical programs. The second
component is a runtime support package which handles interactions
between the system and the user (things such as hit detection,
event detection, screen update and procedure invocatiom). The
design/implementation tool 1is a preprocessor, called MENULAY
which permits the application programmer to wuse interactive
graphical techniques and to design graphics menus. The output of
this preprocessor is high level code which can be compiled with

application specific routines. User interactions with the

74

resulting executable mwodule are then handled by the runtime
support package. Currently, no evaluation of the user interface
is supported. The applicability of the current implementation of

the preprocessor is restricted to menu based interaction.

FLAIR (Functional Language Articulated Interactive
Resources) [WONG82] is a dialogue design tool which enables a
system designer to construct graphically a user dialogue for an
application program. It 1is largely drivem by voice input and
incorporates text picture construction and editing (at the
graphical primitive 1level) as well as dynamic frame layout.
FLAIR is a language and package unto itself with. no appare—;t
"hooks” into other programming languages. As .with UIMS, FLAIR
does not have any validation facility or evaluation capacity

built into the system.

The design of OCOUSIN (COoperative User INterface) at
Carnegie Mellon [BALL82] 1is based on the notion of an
environment. COUS IN acts as an interactive “environment
modifier” through which the user can change the value of any slot
in an environment. An enviromnment is a set of named, typed slots
which act as communication variables between an application
system and its wusers; the environment is wused to specify a
command and provide the parameters which control the operation of

the application system.

78

In conclusion, none of the above described systems provides
support for monitoring facilities. The proposed system for this
study differs from all other systems, whether at the design or
production stage, because of its proposed built-in monitoring and
evaluation facilities not only for the system itself but also for

the user interface generated by the use of this system.

5. PROTOOOLS FOR INTERFACE PROTOTYPING AND EVALUATION SYSTEM

A range of tools are mneeded for the development and
administration of user interfaces for interactive information
systems. A collection of such tools 1is proposed here as a
Protocols for Interface Prototyping and Evaluation (PIPE) system.
The following sections describe the role of the PIPE, enumerate
some of the ©benefits expected from this approach, provide an
overview of the composition of the PIPE, and investigate some

implications of the PIPE for information systems. -

S.1 Role of the PIPE

The PIPE will mediate the interaction between a user and an
application, satisfying user requests for application actions,
and application requests for data or commands from the user. It
will accept as input a dialogue specification, describing the
detailed structure of the interaction. This specification is
distinct from any application program, thus allowing for the
application programmer’s problem-specific skills to be
concentrated on application issues and freed from any detailed
concern with managing the flow of user action and respomses. At
the same time, a dialogue specification provides for the human
factors skill of a wuser interface designer to be applied to

improving the quality of the interaction, without detailed

76

77
concern for the techniques uied to solve the application problem.

Here, an analogy is drawn between the PIPE and a Data Base
Management System (DBMS). The DBMS frees the application
progrmnnef from detailed concern with the management of physical
data storage and retrieval, and allows for the specific skills of
the data base application programmer to be applied to the

specifics of the application.

The building of the user interface of an information system

using PIPE will provide the following advantages:

1. The knowledge required to construct a good interface Ts
diffuse, wuncertain, and hard to acquire [THOMS83]. Onmnly
specialist user interface designers are likely to be able to
devote enough effort to acquire such knowledge. The PIPE can
be an essential tool for exploiting their skills, since it
improves the efficiency with which these skills can be

applied.

2. Without a sound methodology, each user interface design is
likely to proceed in a time consuming and ad hoc fashion.
The PIPE should accelerate the design process, permitting a

much wider range of alternatives to be examined.

3. Prototyping via the PIPE should represent a valuable means

of liaison with prospective users.

78

4. Experiments involving rc¢-implementing entire applications
are prohibitively expensive. The ease with which user
interfaces can be revised using the PIPE should make
realistic and cost-effective ecxperimentation possible. It
also should provide a basis for instrumenting user
interfaces to gather information, for example on the

evolution of patterns of use.

5. The PIPE should provide the capability to adapt to different

user profiles.

6. The system should make it easier to integrate new

application functions into the user interface, and assist in

ensuring a uniform interface as new applications are
developed.
7. The system should provide for applications to be portable,

while allowing a resulting user interface to be tailored to
a particular installation, while preserving wuser interface

quality.

5.2 The Proposed System

This section is devoted to a brief overview of the proposed
system, PIPE, to be developed on an IBM Personal Computer using
the C language. The PIPE will be composed of two main
components, the User Interface Design Subsystem (UIDS) and the

User Interface Execution Subsystem (UIES). The UIDS supports the

79

user interface designer. It will prouvide tools for describing
display layouts, dialogue structures, and interactions with
application programs. The UIDS will allow the generation of a
detailed specification of the user interface that can
automatically be <converted into the C language code required to
implement the specification. The UIES will support the execution
of the wuser interface generated by an interface designer using

the UIDS. Following is a description of these components of PIPE.

$.2.1 User Interface Design Subsystem (UIDS)

This subsystem will provide support to the user interface
designer at three different 1levels of the wuser interface:
Interactive Level, Dialogue Manager Level, and Application

Interface Level.

§.2.1.1 Interactive Level

The design of the Interactive Level will be supported by the

following three modules:

1. Screen Layout Specification Module. The designer will
be able to name a screen, specify background color,
size of the windows, border color, foreground color and
an Event-ID associated with the window to indicate when
the window is to be displayed. A separate window could
be defined for system prompts, user input, system

responses including system error messages and system

80

state. A menu can be associated with ecach of the

windows .

2. ‘Interaction Technique Specification Module. The
designer will ©be able to associate an interaction
technique with a window. He will be able to select the
interaction technique from a library or construct his

own interaction technique.

3. Display Function Specification Module. The designer
will be able to specify the name of a display function
and a window where the information will be displayed.
The major dialogue types supported would be: menu
selection, user initiated command language, function
keys with command language, form-filling, and question

and answer.

5.2.1.2 Dialogue Manager Level

This level will allow the specification of event handlers.
All event descriptions will be stored in a data base and these

will be converted into an executable form.

$§.2.1.3 Application Interface Level

The designer will specify the descriptions of all
application data structures and routines that are accessible to
the wuser interface. The description of application data

structures will include the type of information stored and how it

81

is structured. The description of the application’s routines will
include the name of the routine and the number and type of its
parameters. The description might also include the constraints on
the use of the routines besides pre-conditions and

post-conditions.

$.2.2 User Interface Execution Subsystem (UIES)

The UIES will be the <central core of the PIPE. The
application software will interact with the UIES when the
information system is 'live’. The UIES supervises and implements
the interface specified in the Event Description Table,

essentially acting as an interpreter for the events.

The UIES will be transparent to the wuser and will be

composed of the following compomnents:

1. Feedback Generator. This component will generate appropriate
user feedback. Initially, it will simply comnsult a2 standard
set of messages which will be customized to suit the

feedback required.

2. Adaptive Interface Handler. This component will control
adaptation of the dialogue. It will simply check user input
and will honor a change of interface request by informing
other components of the UIES that the interface level has
been changed. Effectively, this will act as a filter in the

input stream.

82

Buffcred, 1/0 Handler. If the data required has already been
entered, the UIES will read this directly from an input
buffer. If this buffer is empty, then the wuser will . be

prompted for the input.

6. SUMMARY OF PROPOSED RESEARCH

This chapter summarizes the proposed research discussed in
previous chapters. The basic statement of the problem was
discussed in Section 1.1, which stated that the user interface is
often designed without serious considerations for the user on the
part of the designers. Recasons were given for this problem. It
was established that current computer science research is
lacking tools and methodologies for the effective design and
evaluation of user interfaces. There is a need to provide better
methodologies and tools for designing, implementing, maintaining,
and evaluating wuser interfaces for information systems. The

proposed research addresses this need.

The research objectives were first stated in general terms
in Section 2.1 and then refined into specific research objectives
in Section 2.2. The major objectives of this research are: the
development of a comprehensive, objective and generalizable
methodology for the design and evaluation of user interfaces for
interactive information systems; the development of equations
and/or amnalytical models to characterize user behavior and the
performance of a designed interface; the design of a prototype
system for the development and administration of user interfaces;
and the design and use of controlled experiments to support the

research and test/validate the proposed methodology.

83

84

The proposed methodology was discussed in Chapter 3. Several
major concepts of design and evaluation of user interfaces were
explored. These concepts were integraied into a preliminary
methodology to achieve the desired objectives of this research. A
user interface is treated as a virtual machine and its layers
were described inm Section 3.1. Section 3.2.1 established the
criteria for the evaluation of specification methods that

describe and organize the user interaction sequences.

A model of user system interaction was proposed in Section
3.2.2. In this model, "command language” interactions are viewed
as dialogues between two parties. The dialogues are represented
as a sequence of basic interaction events. The entire event is
viewed as a process made up of four main phases: system prompt,
user input, system action and response, and transition control.
The transition control allows the selection of the next event
based on the familiar structured programming control primitives
(sequence, case, do-while). It was shown that, using this model,

various modes of interactions could be defined and implemented.

Section 3.3 discussed the implementation methodology for the
proposed interaction model. The dialogue logic is separated from
the actual text of messages between the user and the system. This
separation allows for quick skeletal implementation which can be

augmented later.

85

A general evaluation methodology was presented in Section
3.4. The proposed methodology will allow interface developer; to
evaluate user interfaces from the viewpoint of the performance of
their wusers. A software monitor will automatically be generated
and incorporated into a designed interface. From the data
collected by the monitor, an interface developer/evaluator will
be able to extract human performance data indicating "ease of

learning” and "ecase of use” of the interface.

Chapter 4 summarized current research studies relevant to
user interface issues. A survey of wuser interface management
systems was presented and it was pointed out that the evaluatibn
component is virtually non-existent among these systems. The
proposed system for this research differs from all other systems,
because of its proposed built-in monitoring and evaluation
facilities, not only for the system itself, but also for the user

interface generated by the use of this system.

Finally, Chapter § provided a brief overview of the system,
PIPE (Protocols for Interface Prototyping and Evaluation), being

developed in support of this proposed research.

APPEB2

ATWO84

BAILS3

BALLS82

BARB83

BARNS81

BARNS2

BARRS1

BASS8S

BATCS81

REFERENCES

Apperley, M. D. and Spence, R., "Hierarchical Dialogue
Structures in Interactive Computer Systems,”

Software-Practice and Experience, 13, 1983, pp. 777-790.

Atwood, M. E., "A Report on the Vail Workshop on Human
Factors in Computer Systems,” IEEE Computer Graphics and
Applications, December 1984, pp. 48-66.

Baily, J. E. and Pearson, S. W., ”"Development of a Tool
for Measuring and Analyzing Computer User Satisfaction,”

Management Science, 29 (6), 1983, pp. 519-529.

Ball, E. and Hayes, P., "A Test-Bed for User Interface
Designs,” Proceedings: Human Factors in Computer Systems,
Gaithersburg, MD., March 15-17, 1982, pp. 85-88.

Barber, R. E. and Lucas, H., C., "Sy’stem Response Time
Operator Productivity and Job Satisfaction,”

Comnunications of the AQM, 26 (11), November 1983, pp.
972-986.

Barnard, P. J., Hammond, N. V., Mortomn, J., Long, J., and
Clark, I. A., "Consistency and Compatibility in Human
Computer Dialog,” International Journal of Man-Machine
Studjes, 15, 1981, pp. 87-137.

Barnard, P., Hammond, N., MacLean, A., and Morton, J.
"Learning and Remembering Interactive Commands,

Proceedings: Human Factors in Computer Systems,
Gaithersburg, MD., March 15-17, 1982, pp. 2-7.

Barron, J., Dialogue and Process Design for JIntecractive
lnin.m_:_i_an Systems Using TAXIS, Tech. Rep. CSRG-128,
Dept. of Computer Science, University of Toronto,
Toronto, Canada, April 1981.

Bass, L. J., ”"An Approach to User Specification of
Interactive Display Interfaces,” JEEE Transactions on
Software Engincering, SE-11 (8), 1985, pp. 686-698.

Batchelor, W. J. and Endicott, L. J., "An Experimental
System to Support a Very High Level User Interface,”
Proceedings: AFIPS National Computer Conference, 1981,
Pp- 389-392.

86

BENBS81

BENBS8 4

BLAC31

BLACS32

BLEHS80

BLES82

BLUMSB2

BOKES80

BORGS82

BORG84a

BORG84b

87

Benbasat, 1., Dexter, A. S., and Masulis, P. S., "An
Experimental Study of the Human/Computer Interface,”

Communications of the ACM, 24 (11), 1981, pp. 752-762.

Benbasat, I. and Wand, Y., "A Structured Appraoch to
Designing Human-Computer Dialogues,” International
Journal of Man-Machine Studies, 21, 1984, pp. 105-126.

Black, J. B. and Sebrechts, M. M., "Facilitating
Human-Computer Communications,” Applicd

Psycholinguistics, 2, 1981, pp. 149-177.

Black, J. B. and Moran, T. ., "Learning and Remembering

Command Names,” P_m_c_u_dmgs_:. Human Factors in Computer
Systems, Gaithersburg, MD., March 15-17, 1982, pp. 8-11.

Bleher, J. H., Caspers, P. G., Henn, H., and Maerker, K.,
"A Graphic Interactive Application Momitor,” IBM System
Journal, 19 (3), 1980, pp. 382-402.

Bleser, T. and Foley. J. D., "Toward Specifying and
Evaluating the Human Factors of User-Computer
Interfaces,” Proceedings: Human Factors .in Computer
Systems, Gaithersburg, Md., March 15-17, 1982, pp.
309-314.

Blum, B. I. and Houghton, R. C. Jr., ”"Rapid Prototyping
of Information Management System,” AQM SIGSOFT Software
Engincering Notes, 7 (5), December 1982, pp. 35-38.

BO, Ketil, "Problems of the 80°'s in Man/Machine
Conmunication,” in Guedj, R. A., tenHagen, P. 1J.,
Hopgood, F. R., Tucker, H. A., and Duce, D. A., (Eds.),

of Interaction, North-Holland, Amsterdam,
1980, pp. 149-158.

Borgman, C. L., "Mental Models: Ways of Looking at a
System,” ASIS Bulletin, December 1982, pp. 38-39.

Borgman, C. L., The User's Mental Model of an Information
Retricval System: Effects on PRerformance, Ph.D.

Dissertation, Stanford University, California, 1984,
378p.

Borgman, C. L., "Psychological Research in Human-Computer
Interaction,” Annual Review of Information Science and
Technology, 19, 1984, pp. 33-64.

BORM7 8

BORUS82

BRANS8 4

BROWS 3

BUXT83a

BUXT83b

CARDS80

CARDS83

CARRS2

CARRSS

CHAS73

Borman, L. and DNominivk, W. D., Profile Evaluation,
Rescarch and Modelling for Science Information Systems: A
Report on the Development of a Generalized Evaluation

1o Study User Interaction, Final Report, NSF

DSI76-19481, Northwestern University, Evanston, Illinois,
June 1978, 158p.

Borufka, H. G., tenHagen, P. J., "Dialogue Cells: A
Method for Defining Interactions,” IEEE Computer Graphics
and Applications, July 1982, pp. 25-32.

Branscomb, L. M. and Thomas, J. C., "Ease of Use: A
System Design Challenge,” IBM System Jourmal, 2 (3),
1984, pp. 224-235.

Brown, P. J., "Error Messages. The Neglected Area of the

Man-Machine |Interface?,” Communications of the AQM, 26
(4), 1983, pp. 246-249.

Buxton, W., Lamb, M. R., Sherman, D., and Smith, K. C.,
"Towards a Comprehensive User Interface Management

System,” Computer Graphics, 17 (3), July 1983, pp. 35-42.

Buxton, W., "Lexical and Pragmatic Considerations of

Input Structure,” Computer Graphics, January 1983, pp.
31-37.

Card, S. K. and Moran, T. P., "The Keystroke-Level Model
for User Performance Time with Interactive Systems,”

Communications of the AQM, 23, 1980, pp. 396-410.

Card, S. K., Moran, T. P., and Newell, A., The Psychology

of Human-Computer Interaction, Lawrence Erlbaum
Associates, Hillsdale, N. J., 1983.

Carroll, J. M. and Mack, R. L., "™Metaphor and Cognitive
Representation of Computing Systems,” JEEE Transactions
on Systems. Man and Cybernetics, 12, 1982, pp. 107-116.

Carroll, J. M. and Mack, R. L., "Metaphor, Computing
Systems and Active Learning,” International Journal of
Man-Machine Studies, 22 (1), January 1985, pp. 39-57.

Chase, W. G. and Simon, H. A., 7"Perception imn Chess,”

Cognitive Psychology, 4, 1973, pp. 55-81.

CHIUS8S

COCHS8 4

CROF 384

CUFF80

CURTS4

CYER63

DAGWS 3

DATES8 4

DAVIg4

DAVIg3

DEGR80

DEME8 1

89

Chi, U. 1., "Formal Specification of User Interfaces: A
Comparison and Evaluation of Four Axiomatic Approaches,”

JEEE Transactions on Software Engincering, SE-11 (8),
1985, pp. 671-68S5.

Cochran, D. R., Hobbs, R. W., and Meason, R. N., Survey
Tools, Computer Technology Associates Technical Report,
Landover, Md., February 1984.

Croft, W. B., "The Role of Context and Adaptation in User
Interfaces,” Intermational Jourmal of Man-Machine
Studiesg, 21, 1984, pp. 283-292.

Cuff, R. N., "On Casual Users,” International Journal of
Man-Machine Studies, 12, 1980, pp. 163-187.

Curtis, B., Forman, 1., Brooks, R., Soloway, E., and
Ehrlich, K., "Psychological Perspectives for Software

Science,” JInformation Processing and Mapagement, 20
(1-2), 1984, pp. 81-96.

Cyert, R. M. and March, J. G., A Behavioral Theory of the
Firm, Prentice-Hall, Englewood Cliffs, N. J., 1963.

Dagwell, R. and Weber, W., ”"System Designers’ User
Models: A Comparative Study and Methodological

Critique,” Communications of the ACM, 26 (11), November
1983, pp. 987-997.

Date, C. J., "Some Principles of Good Language Design,
AQM SIGYDD RECORD 14 (3), November 1984, pp. 1-7.

Davis, J. B., "Chunks: A Basis for Complexity

Measurement,” Information Processing and Management, 20
(1-2), 1984. pp. 119-127

Davis, R., "Task Analysis and User Errors: A Methodology
for Assessing Interactions,” JInternational Jourmal of
Man-Machine Studies, 19, 1983, pp. 561-574.

DeGreene, K. B., "Major Conceptual Problems in the System
Management of Human Factor/Ergonomics Research,”

Ergonomics, 23, 1980, pp. 3-11.

Demers, R. A., "System Design for Usability,”
Communications of the ACM, 24, 1981, pp. 494-501.

C -~

DOM1 78

DOMI 79

DOMI 84

DOUG8 2

DRAP84

DRAY81

DUBO81

DUNS82a

DUNS82b

90

Dominick, W. D. and Urban J. E., Application of a
Generalized Evaluation Methodology for Analyzing User
Interaction with the MADAM System at 1the University of
Southwestern Louisiana, Technical Report OMPS-78-6-3,

Computer Science Department, University of Southwestern
Louisiana, Lafayette, Louisiana, September 1978, 347p.

Dominick, W. D. and Penniman, w. D., "Automated
Monitoring to Support the Analysis and Evaluation of
Information Systems,” Proceedings of the Sccond

Retrieval, AQM SIGIR FORWM, XIV (2), September 27-28,
1979, pp. 2-9.

Dominick, W. D., ”"The USL NASA PC R&D Project:
Specifications of Objectives,” USL/DBMS NASA/PC R&D

Working Paper Series, Report Number DBMS.NASA/PC R&D-2,
June 6, 1984, 6p.

Douglas, S. A. and Moran, T. P., "Learning Text Editing
Semantics by Analogy,” Proceedings of the SIGCHI and the

Hmnf_a_c_x_o_r_s..s.n_c_xm Conference on Human Factors in
Systems, Boston, MA, December 12-15, 1983, pp.

207-211.

Draper, S. W. and Norman, D. A., ”"Software Engineering
for User Interfaces,” DProceedings: 7th International

Conference on Software Engincering, Orlando, Fla., March
26-29, 1984, pp. 214-220.

Dray, S. M., Ogdan, N. G., and Vestewig, R. E.,
"Measuring Performance with a Menu-Selection
Human-Computer Interface,” Proceedings of the 25th Annual

Meetings of the Human Factor Society, Rochester, N. Y.,
1981.

Du Boulay, B., O, Shea, T., and Monk, J., "The Black Box
Inside the Glass Box: Presenting Computing Concepts to

Novices,” International Journal of Man-Machine Studices,
14, 1981, pp. 237-250.

Dunsmore, H. E., Using Formal Grammer as a Design Tool to
Predict the Most Useful Characteristics of Interactive

Systems, Office Automation Conference Digest, San
Francisco, AFIPS Press, 1982, pp. §3-56.

Dunsmore, H. E., and Reisner, P., ”"Some Further Evidence
on the Formal Grammer Application to Human Factors
Research,” Technical Report 348, Department of Computer
Sciences, Purdue University, 1982.

DURHS8 3

DURRS2

DZID78

EASO80

ErMD8 1

EDMO8 2

EHRI83

EMBL78a

EMBL78b

FELD82

FENI81

91

Durham, I., Lamb, D., and Saxe, J., "Spelling Corrections

in User Interfaces,” Communications of the AQM, 26 (10),
October 1983, pp. 764-773.

Durrett, J. and Stimmel, T., "A Production System Model
of Human-Computer Interaction,” Proceedings: Human

Factors in Computer Systems, Gaithersburg, MD., March
15-17, 1982, pp. 393-399.

Dzida, W., Herada, S. L., and 1Itzfeldt, W. D., "User
Perceived Quality of Interactive Systems,” 1EEE
Transactions on Software Engineering, SE-4, 1978, pp.
270-276.

Eason, K. D., ”"Dialogue Design Implications of Task
Allocation between Man and Computer,” Ergonomics, 23,
1980, pp. 881-891.

Edmonds, E. A., "Adaptive Man-Computer interfaces,” in
Coombs, M. J., and Alty, J. L., (Eds.), Computing Skills

and the User Interface, Academic Press, London, 1981, pp.
389-426. : ’

Edmonds, E., "The Man-Computer Interface: A Note on
Concepts and Design,” Internatiomnal Journmal of
Man-Machine Studies, 16, 1982, pp. 231-236.

Ehrich, R. W., "DMS - A System for Defining and Managing
Human Computer Dialogues,” Automatica, 9 (6), 1983, pp.
655-662.

Embley, D. W., "Empirical and Formal Language Design
Applied to a Unified Control Construct for Interactive
Computing,” International Journal of Man-Machine Studies,
10 (2), March 1978, pp. 197-216.

Embley, D. W., Lan, M. T., Leinbaugh, D. W., and Nagy,
G., A Procedure for Predicting Program Editor
Performance from the User’s Point of View,” JInternational
Journal of Man-Machine Studies, 10, 1978, pp. 639-650.

Feldman, M. and Rogers, G., "Toward the Design and
Development of Style-Independent Interactive Systems,”
Proceedings: Human Factors in Computer Systems,
Gaithersburg, MD., March 15-17, 1982, pp. 89-100.

Fenichel, C. H., ”"Online Searching: Measures that
Discriminate among Users with Different Types of
Experiences,” Journal of the ASIS, January 1981, pp.
23-320

FERRS83

FEYO717
FOLE74

FOLES80

FOLE82

FOLEg84

FOSS82

GAINS1

GEBH738

GELLS83

GENTS82

Ferrari, D., Servazi, G., and Zeigner, A., Mecasuremenst

aAnd Tuning of Computer Systems, Prentice-Hall,

1983.

Feyock, S., "Transition Diagram-Based CAI/Help Systems,”
International Journal of Man-Machine Studies, 9, 1977,
PP. 399-413.

Foley, 1J.

Graphic Man-Machine Conversation,”

April 197

Foley, J.
Languages
R., Tucke

Foley, J.
Graphics,

Foley, J.
Factors

JEEE Computer Graphics and Applications, Nov.

13-48.

Foss, D.

Manual Labor:

D. and Wallace, V. L., "The Art of
4, pp. 462-471.

D., "The Structure of Interactive

Natural

Proceedings: IEEE, 62,

Conmmand

,7 in Guedj, R. A., tenHagen, P. J., Hopgood, F.

r, H. A., and Duce, D. A. (Eds.), Methodology of
Interaction, North-Holland, Amsterdam, 19830, pp.

D. and Van Dam, A., Fundamentals of
Addison-Wesley, Reading, MA., 1982.

227-234.

Computer

D., Wllace, V. L., and Chan, P., "The Human
of Computer Graphics Interaction Techniques,”

J., Rosson, M. D., and Smith, P. L.,

1984, pp.

"Reducing

An Experimental Analysis of Learning Aids

for a Text Editor,” Proceedings: Human Factors in

Computer
PpP. 332-336.

Systems, Gaithersburg, M. D., March 15-

17, 1982,

Gaines, B. R., "The Technology of Interaction-Dialogue

Programming Rules,”

Studijces,

Gebhardt,
Criteria

14 (1), 1981, pp. 133-150.

International Journal of Man-Machine

F. and Stellmacher, I. "Opinion Papere: Design

for Documentation Retrieval Languages,”

of the ASIS, July 1978, pp. 191-199.

Geller, V. J. and Lesk, M. E., ”"User Interfaces to
Information Systems: Choices vs. Commands,” Proceedings:

6th International AQM SIGIR Conference,

June 6-8,

Gentner,
Teeming
Gentner,
Lawrence
99-129.

1983, pp. 130-135.

dournal

Bethsada, MD.,

D. and Gentner, D. R., "Flowing Waters or
Crowds: Mental Models of Electricity,” in
D., and Stevens, A. S., (Eds.), Mental Models,

Erlbaum Associates, Hillsdale, N. J.,

1982, pp.

GILF82

GOODSg 2

GOULS8 4

GREES81

GREES83

GREES8S

GUED80

GUES 82

HAGGS83

HALAS82

HALL34

93

Gilfoil, D. M., "Warming Up to Computers: A Study of
Cognitive and Affective Interaction over Time,”

Gaithersburg, MD., March 15-17, 1982, pp. 245-250.

Good, M., "An Ease of Use Evaluation of an Integrated
Document Processing System,” Proceedings: Human Factors

in Computer Systems, Gaithersburg, MD., March 15-17,
1982, pp. 142-147.

Gould, J. D. and Bois, S. J., "Speech Filing - An Office

System for Principals,” IBM System Journal, 23 (1), 1984,
pPp. 65-81.

Green, M., ”"A Methodology for the Specification of

Graphical User Interfaces,” Computer Graphics, 15 (3),
August 1981, pp. 99-108.

Green, M., ”"A Catalogue of Graphical Interaction

Techniques,” Computer Graphics, January 1983, pp. 46-52.

Green, M., "The University of Alberta User Interface

Management System,” AQM SIGGRAPH, 19 (3), 1985, pp.
205-213.

Guedj, R. A., "Remarks on Some Aspects of Man-Machine
Interaction,” in Guedj, R. A., tenHagen, P. J., Hopgood,
F. R., Tucker, H. A., and Duce, D. A., (Eds.),

of Interaction, North-Holland, Amsterdam,
1980, pp. 235-238.

Guest, S. P., "The Use of Software Tools for Dialogue
Designs,” International Journal of Man-Machine Studics,
16, 1982, pp. 263-28S.

Hagglund, S. and Tibell, R., "Multi-Style Dialogues and
Control Independence in Interactive Software,” in Green,
T. R., Payne, S. J., and van der Veer, G. C., (Eds.), The

Psychology of Computer Use, Academic Press, London, 1984,
PP. 171-189.

Halasz, F. G. and Moran, T. P., "Analogy Considered

Harmful, Proceedings: Human Factors in Computer Systems,
Gaithersburg, MD., March 15-17, 1982, pp. 383-386.

Hall, P. P., "Design Criteria for a PC-Based Common User
Interface to Remote Information Systems,” USL/DBVIS NASA

PC/R&D Working Paper Series, Report Number DBMS.NASA/PC
R&D-9, August 13, 1984, 21p.

HALLS8S5a

HALLS8S5b

HALS77

HANASBO

HARDS82

HART79

HAUP83

HAYES81

HODG38S

HOLCS8S

HOROSS

INNO82

94

Hall, P. P., The Design of PC/MISI, A PC-Based Common
User Interface to Remote Information Storage and
Retrieval Systems, Master Thesis, University of

Southwestern Louisiana, Lafayette, Louisiana, 1985, 83p.

Hall, P. P., "PC-Based Multiple Information System
Interface - Detailed Design and Implementation Plan,”

USL/DBMS NASA/PC R&D Working Paper Serjes, Report Number
DBMIS .NASA/PC R&D-16, April 10, 1985, 69p.

Halstead, M. H., Elements of Software Science, Elsevier
North-Holland, New York, 1977.

Hanau, P. R. and Lenorovitz, D. R., ”"Prototyping and
Simulation Tools for User/Computer Dialogue Design,”

Computer Graphics, 14 (3), July 1980, pp. 271-278.

Hardy, I. T. Jr., "The Syntax of Interactive Command
Languages: A Framework for Design,” Softwarec-Practice
and Experience, 12, 1982, pp. 67-75.

Hartson, H. R., and Schnetzler, M. D., Generalized
Interactive User Interface Dialog Designer, Computer

Science Working Paper, Virginia Polytechnic Institute and
State University, Blacksburg, VA., 1979.

Hauptmann, A. G. and Green, B. F., ”"A Comparison of
Command, Menu-Selection and Natural-Language Computer
Programs,” Behavior and Information Technmology, 2 (2),
1983, pp. 163-178.

Hayes, P., Ball, E., and Reddy, R., "Breaking the
Man-Machine Communication Barrier,” JEEE Computer, 14
(3), 1981, pp. 19-30.

Hodgson, G. M. and Ruth, S. R., "The Use of Menus in the
Design of On-Line Systems: A Retrospective View,” SIGCHI

Bulletin, 17 (1), 1985, pp. 16-22.

Holcomb, R. and Tharp, A. L., "The Effect of Windows on
Man-Machine Interfaces (or opening doors with windows),

New Orleans, LA, March 12-14, 1985, pp. 280-291.

Horowitz, E., Kemper, A., and Narasimhan, B., ”"A Survey
of Application Generators,” IEEE Software, January 1985,
Pp- 40-54.

Innocent, P. R., "Towards Self-Adaptive Interface
Systems,” International Journal of Man-Machine Studies,
16, 1982, pp. 287-299.

IVES83

JACO83a

JACO83b

KAMRS 3

KASIg82

KIERS82

KRAUSBO

LANDS83

LEDG80

LEWI 82

LIEBS8S

LIND8S

95

Ives, B., Olscn, M. H., and Baroudi, J. J., ™"The
Measurement of User Information Satisfaction,”

Comnunications of the ACM, 26 (10), October 1983, pp.
785-793.

Jacob, R. K., "Using Formal Specifications in the Design

of a Human-Computer Interface,” Communications of the
AM, 26 (4), April 1983, pp. 259-264.

Jacob, R. K., Survey and Examples of Specification

Techniques for User JInterfaces, NRL Report, Naval
Research Laboratory, Washington, D. C., 1983.

Kamran, A. and Feldman, M. B., ”Graphic Programming
Independent of Interaction Techniques and Styles,”

Computer Graphics, January 1983, pp. 58-66.

Kasik, D. J., "A User Interface Management System,”

Computer Graphics, 16 (3), July, 1982, pp. 99-106.

Kieras, D. E. and Polson, P. G., An Approach to the

Formal Analysis of User Complexity, Project on the User
Complexity of Devices and Systems, Working Paper No. 2.,

University of Arizona and University of Colorado, 1982.

Krause, J., "Natural Language Access to Informtion
Systems: An Evaluation Study of its Acceptance by End

Users,” Information Systems, 5§, 1980, pp. 297-318.

Landauer, T. K., Galotti, K. M., and Hartwell, S.,
"Natural Command Names and Initial Learning: A Study of

Text Editing Terms,” Communications of the AOM, 26 (7),
July 1983, pp. 495-503.

Ledgard, H., Whiteside, J. A., Singer, A., and Seymour,
w., "The Natural Language of Interactive Systems,”

Communications of the AQM, 23, 1980, pp. 556-563.

Lewis, C. A. and Mack, R., "Learning to Use a Text
Processing System: Eveidence from ’'Thinking Aloud’

Protocols,” Proccedings: Human Factors in Computer
Systems, Gaithersburg, MD., March 15-17, 1982, pp.

387-392.

Lieberman, H., "There’s More to Menu System Than Meets
the Screen,” AOM SIGGRAPH, 19 (3), 1985, pp. 181-189.

Lindquist, T. E., "Assessing the Usability of
Human-Computer Interfaces,” JIEEE Software, January 198§,
pp- 74-82.

LING82

LINS82

LISK7S

MAEDS§ 4

MAGU82

MALLS82

MALO82

MART73

MARTS82

MASO83

MAYE79

MAYES81

96

Ling, M. M., "Designing Data Entry Programs Using State
Diagrams as a Conmon Model, Proceedings: 6th
wwmmw Tokyo,
Japan, September 13-16, 1982, pp. 296-308.

Lin Sin Cho, J. R., "Automatic Report Formatting from a

Report Specification,” The Computer Journmal, 25 (2),
1982, pp. 242-247.

Liskov, B. H. and Zilles, S., ”"Specification Techniques

for Data Abstractions,” Proccedings: International
Conference on Reliable Software, AQM SIGPLAN, 10 (6),
1975, pp. 72-87.

Maeda, K., Miyake, Y., Nivergelt, J., and Saito, Y., "A
Comparative Study of the Man-Machine Interfaces in

Interactive Systems,” SIGCHI Bulletin, 16 (2), Oct. 1984,
pp. 44-61.

Maguire, M., "An Evaluation of the Published
Recommendations on the Design of Man-Computer Dialogues,”
International Journal of Man-Machine Studies, 16, 1932,
pp. 237-261

Mallgren, W. R., Formal Specification of Interactive

Graphics Programming Languages, The MIT Press, Cambridge,
MA., 1982.

Malone, T. W., "Heuristics for Designing Enjoyable User
Interfaces: Lessons from Computer Games,” Proceedings:

Human Factors in Computer Systems, Gaithersburg, MD.,
March 15-17, 1982, pp. 63-68.

Martin, J., Design of Man-Computer Dialogues,

Prentice-Hall, Englewood Cliffs, N. J., 1973.

Martin, J., Application Development Without Programmers,
Prentice-Hall, Englewood Cliffs, N. J., 1982.

Mason, R. E. A. and Carey, T. T., "Prototyping

Interactive Information Systems,” C_omnmm;nn_s_nﬁm
AQM, 26 (5), May 1983, pp. 347-354.

Mayer, R. E., "A Psychology of Learning BASIC,”
Communications of the AQM, 22, 1979, pp. 589-593.

Mayer, R. E., "The Psychology of How Novices Learn

Computer Programming,” ACM Computing Surveys, 13, 1981,
PP- 121-141.

MEAD7 8

MICHS81

MILLS6

MILL?77

MILL71

MORAS0

MORAS81a

MDRAS81D

MORL33

MDZES§?2

MMP77

97

Mead, R. L. and Schwetman, H. D., “Job Scripts - A
Workload Description Based on System Event Data,”

: AFIPS Natijional Computer Conference, 1978,
PpP. 457-464.

Michelsen, C. D., The Objective Evaluation of IS&R/DEMS
Systems Utilizing Software Engineering Principles, Ph. D.

Dissertation, University of Southwestern Louisiana,
Lafayette, Louisiana, August 1981, 365p.

Miller, G. A., "The Magical Number Seven Plus or Minus
Two: Some Limits on our Capacity for Processing

Information,” Psychological Review, 63, 1956, pp. 81-97.

Miller, L. A., and Thomas, J. C., "Behavioral 1Issues in
the Use of Interactive Systems,” International Journal of
Man-Machine Studies, 9, 1977, pp. 509-536.

Miller, R. B., Human Ease of Use Criteria and Their
Tradeoffs Technical Report TR00.2185, IBM Poughkeepsie

Laboratory, April 12, 1971, 16p.

Moran, T. P., "A Framework for Studying Human-Computer
Interaction,” in Guedj, R. A., tenHagen, P. J., Hopgood,
F. R., Tucker, H. A., and Duce, D. A., (Eds.),

of Interaction, North-Holland, 1980, pp.
293-301.

Moran, T. P., "The Command Language Grammer: A
Representation for the User Interface of Interactive
Computer Systems,” International Journal of Man-Machine
Studies, 15, 1981, pp. 3-50.

Moran, T. P., ”"Guest Editors Introduction: An Applied
Psychology of the User,” AQM Computing Surveys, 13, 1981,
PP. 1-12.

Morland, D. V., "Human Factors Guidelines for Terminal

Interface Design,” Communications of the AOM, 26 (7),
1983.

Mozeico, H., "A Human/Computer Interface to Accomodate

User Learning Stages,” Communications of the AQM, 25 (2),
1982, pp. 100-104.

MIMPS Development Commitee, MMPS Language Standard,
American National Standards Institute, New York, 1977.

MYLOS80

NEWMS6 8

NICKS81

NOETS§2

NOLA74

NORMS 1

NORMS 2

NORMS 4

OBERS84

OLS0O83a

OLSO83b

OLSO8S

98

Mylopoulos, J., Bernstein, P., and Wong, H., "A Lauguage
Facility for the Design of Interactive Databasze-Intensive
Applications,” TIransactions on Database¢ Sys*ems, § (2),
June 1980, pp. 185-207.

Newman, W. M., "A System for Interactive Graphical
Programming,” Proceedings: AFIPS Spring Joint Computer
Conference, 1968, pp. 47-54.

Nickerson, R. S§S., "Why Interactive Computer Systems are
Sometimes Not Used by People Who Might Benefit from

Them,” International Journal of Man-Machine Studjies, 15,
1981, pp. 469-483.

Noethe, V., "User Behavior at System Command Language

Level,” Computer Performance, 3 (1), 1982, pp. 5-9.

Nolan, L. E. and Strauss, J. C., "Workload
Characterization for Time Sharing System Selection,”

Software-Practice and Experience, 4 (1), 1974, pp. 25-39.

Norman, D. A., "The Trouble with UNIX,” Datamation, 27,
1981, pp. 139-150.

Norman, D., "Steps Toward a Cognitive Englneerlng Design
Rules Based on an Analysis of Human Error,” Proceedings:

Human Factors in Computer Systems, Gaithersburg, MD.,
March 15-17, 1982, pp. 378-382.

Norman, D. A., "Stages and Levels in Human-Machine

Interactions,” International Journal of Man-Machine
Studies, 21, 1984, pp. 365-373.

Oberquelle, H., "On Models and Modelling in
Human-Computer Co-operation,” in van der Veer, G. C.,
Tauber, M. J., Green, T. R., and Gorny, P., (Eds.),
Lecture Notes in Computer Science, 178, Springer-Verlag,
1984, pp. 23-43.

Olson, D. R., TAutomatic Generation of Interactive

Systems,” Computer Graphics, 1983, pp. §3-57.

Olson, D. R., and Dempsey, E. P., "SYNGRAPH: A Graphical

User Interface Generator,” Computer Graphics, 17 (3),
July 1983, pp. 43-50.

Olson, D. R., Dempsey, E. P., and Rogge, R.,
"Input/Qutput Linkage in a User Interface Management
System,” ACM SIGGRAPH, 19 (3), 1985, pp. 191-197.

PARNG69

PAYN8 4

PENNS8O

PILO83a

PILO83b

RADHS 2

RAMS 83

REES8S

REISS81

REIS83

99

Parnas, D. L., "On the Use of Transition Diagrams in the
Design of a User Interface for an Interactive Computer
System,” Proccedings: 24th National ACM Conference, 1959,
pp. 379-38S.

Payne, S. J., Sime, M. E., and Green, T. R., "Perceptual
Structure Cueing in a Simple Command Language,”
International Journal of Man-Machine Studies, 21, 1984,
PP- 19-29.

Penniman, W. D. and Dominick, W. D., "Monitoring and
Evaluation of On-Line Information System Usage,”

Information Processing and Management, 16, 1980, pp.
17-3S.

Pilote, M., "A Programming Language Framework for the
Design of User Interfaces,” Proceeding of the Conference

on Principles of Programming Languages, ACGM, June 1983,
PpP-. 118-136.

Pilote, M., A Framework for the Design of Linguistic User
Interfaces, Ph. D. Thesis, Dept. of Computer Science,
University of Toronto, Toronto, Canada, 1983.

Radhakrishnan, T., Grosoner, C., and Benoliel, M.,
"Design of an Interactive Data Retrieval System for

Casual Users,” Information Processing and Management, 18
(1), 1982, pp. 23-32.

Ramsey, H. R. and Grimes, J. D., ”"Human Factors in
Interactive Computer Dialog,” Annual Review of
Information Science and Technology, 18, 1983, pp. 29-59.

Reese, J., Twiddy, R., Buchannan, L., Tarka, M., and
Leung, K. C., "GUIDES: A Tool for Rapid Prototyping of
User-Computer Interfaces,” Proccedings of the 1985 AQM
Computer Science Conference, March 12-14, 1985, pp.
272-279.

Reisner, P., "Formal Grammer and Human Factor Design of
an Interactive Graphic System,” JIEEE Transactions gn
Software Engineering, SE-7 (2), 1981, pp. 229-240.

Reisner, P., "Analytical Tools for Human Factors of
Software,” in Blaser, A., and Zoeppritz, M., (Eds.),
Lecture Notes in Computer Science, Springer-Verlag, 150,
1983, pp. 94-121.

REIS84

RICHS83

ROACS2

ROBE83

ROBIS8S

ROHR 8 4

ROSES82

ROSES83

ROWES 3

RUMES1

100

Reisner, P., "Formal Grammer as a Tool for Analyzing Ease
of Use: Some Fundamental Concepts,” in Thomas, J. C., and
Schneider, M. L., (Eds.), Humarn Factors .in Computer
Systems, Ablex Publishing Corp., Norwood, N. J., 1984,
PP. 53-78.

Rich, E., "Users are individuals; Individualizing User
Models,” lInternational Journal of Man-Machine Studies,
18, 1983, pp. 199-214.

Roach, J., Hartson, H. R., Ehrich, R., Yunten, T., and
Johnson, D:, "IMS: A Comprechensive System for Managxng
Human-Computer Dialogue,” Proceedings: Human Factors in

Computer Systems, Gaithersburg, MD., March 15-17, 1982,
PpP- 102-10S.

Roberts, T. L. and Moran, T. P., "The Evaluation of Text
Editors: Methodology and Empirical Results,”

Communications of the AQM, 26 (4), April 1983, pp.
265-283.

Robinson, J. and Burns, A., "A Dialogue Development
System for the Design and Implementation of User
Interfaces in Ada,” The Computer Journal, 28 (1), 1985,
PP. 22-28.

Rohr, G. and Tauber, M., "Representational Frameworks and
Models for Human-Computer Interfaces,” in van der Veer,
G. C., Tauber, M. J., Green, T. R., and Gorny, P.,

(Eds.), Lecture Notes in Computer Science,
Springer-Verlag, 178, 1984, pp. 8-25.

Rosenberg, J., "Evaluating the Suggestiveness of Command

Names,” Proccedings: Human Factors in Computer Systems,
Gaithersburg, MD., March 15-17, 1982, pp. 12-16.

”

Rosenberg, J., "Featural Approach to Conmand Names,

Proceedings CHI '83. Human Factors in Computer Systems,
AOM, 1983, pp. 116-119.

Rowe, L. A., and Shoens, K. A., "Programming Language
Constructs for Screen Definition,” JEEE Transactions on
Software Engineering, 9 (1), January 1983, pp. 31-39.

Rume lhart, D. E. and Norman, D. A., "Analogical Processes
in Learning,” in Anderson, J. R., (Ed.), Cognitive Skills
and Their Acquisition, Lawrence Erlbaum Associates,
Hillsdale, N. J., 1981, pp. 335-359.

SAJASS

SAVAS4

SEWA7S

SCHV34

SHNE79

SHNES80

SHNES82

SIMD80

SING79

SMIT84

101

Saja, A. D., "The Cognitive Model: An Approach to
Designing the Human Computer Interface,” SIGCHI Bulletin,
16 (3), 1985, pp. 36-40.

Savage, R. E. and Habineck, J. K., "A Multilevel
Menu-Driven User Interface: Design and Evaluation through
Simulation,” in Thomas, J. C., and Schneider, M. L.,

(Eds.), Human Factors in Computer Systems, Ablex
Publishing Corp., Norwood, N. J., 1984, pp. 165-186.

Seward, H. H., "Evaluating Information Systems,” in
McFarlan, F. w., and Nolan, R. L., (Eds.), The

Information Systems Handbook, Dow Jones-Irwim, Inc.,
Homewood, Il., 1975, pp. 132-153.

Schvaneveldt, R., Cooke, N., Durso, F., Onorato, L., and
Bailey, G., "A Taxanomy of Human-Computer Interactions:
Toward a Modular User Interface,” in Salvendy, G., (Ed.),

Human-Computer Interaction, Elsevier Science Publishers,
Amsterdam, 1984, pp. 121-124.

Shneiderman, B., "Human Factors Experiments in Designing
Interactive Systems,” JEEE Computer, 12 (12), December
1919’ pp- 9‘19.

Shneiderman, B., Softwarc Psychology - Human Factors .in

Computer and Information Systems, Winthrop Publishers,
Inc., Cambridge, MA, 1980.

Shneiderman, B., "™ultiparty Grammars and Related
Features for Defining Interactive Systems,” I1EEE
Transactions on Systems, Man and Cybernetics, SMC-12 (2),
March/April 1982, pp. 148-154.

Simon, H. A., "Problem Solving and Education,” in Tuma,

D. T., and Reif, F., (Eds.), Problem Solving and

Education: Issues in Tcaching and Research, Lawrence
Erlbaum Associates, Hillsdale, N. J., 1980.

Singer, A., Formal Methods and Human Factors in the
Design of Interactive JLanguages, Ph. D. Dissertation,

Computer Information Science Dept., University of
Massachussettes, 1979.

Smith, R. G., Lafue, G. M., Schoen, E., and Vestal, S.
C., "Declarative Task Description as a User-Interface
Structuring Mechanism,” IEEE Computer, Secptember 1984,
PP. 29-37.

SPEI83

STUD8 4

TAVES8S

THIMBO0

THOMS 3

USNRS83

WASS79

WASSSE1

WASS82

WASS84

WASS8S

WILLS2

102

Speigler, I., "™odelling Man-Machine Inte:face in a Data
Base Environment,” JInternatiopal Journal of Man-Machine
Studies, 18, 1983, pp. 55-70.

Studer, R., TAbstract Models of Dialogue Concepts,”
.Emmd_mz.s_.. Zth International Conference on Software

, Orlando, Fla, March 26-29, 1984, PP-
420-429.

Tavendale, R. D., "A Technique for Prototyping Directly
from a Specification,” Proceedings: B8th International

Conference on Software Engineering, London, U. K., August
28-30, 1985, pp. 224-229.

Thimbley, H., "Dialogue Determirnation,” JInterpational
Journal of Man-Machine Studies, 13 (3), 1980, pp.
295-304.

Thomas, J. J. and Hamlin, G., "Graphical Input
Interaction Technique (GIIT) Workshop Summary,” Computer

Graphics, January 1983, pp. 5-30.)
U. S. National Research Council, Research Needs for Human

Factors, Committee on Human Factors Commission on
Behavioral and Social Sciences and Education, National
Academy Press, 1983.

Wasserman, A. I. and Stinson, S., "A Specification Method
for Interactive Information Systems,” Proceedings of the
JIEEE Computer Society Conference on Specifications of
Reliable Software, Cambridge, MA., 1979, pp. 68-79.

Wasserman, A. I., "User Software Engineering and the

Design of Interactive System,” Proceedings: Sth
International Conference on Software Engineering, 1981,
pPp- 387-393.

Wasserman, A. I., and Shewmake, D. A., "Rapid Prototyping
of Interactive Information Systems,” ACM SIGSOFT Software
Engineering Notes, 7 (5), December 1982, pp. 171-180.

Wasserman, A. I., "Specification and Implementation of
Interactive Information Systems,” Proceedings: AFIPS
Natioual Computer Conference, 53, 19834, pp. 261-266.

Wasserman, A. I., "Extending State Transition Diagrams
for the Specification of Human-Computer Interaction,”
JEEE Transactions on Software Engineering, SE-11 (8),
August 1985, pp. 699-713.

Williams, B., "The Human Side of Information’s Converging

Technology,” ASIS Bulletin, 9 (2), 1982, pp. 24-26.

103

WILS82 Williges, R. C. and Williges, B. H., "Human-Computer

WONG 8 2

YOUNSE1

Dialogue Design Considerations,” Proccedings: IFAC
Baden-Baden, F.R.G., 1982, pp. 239-246.

Wong, P. C. and Reid, E. R., "FLAIR - User Interface

Dialog Design Tool,” Computer Graphics, 16 (3), July
19829 ppo 87'980

Young, R. M., "The Machine Iaside the Machine: Users’
Models of Pocket Calculators,” International Journal of
Man-Machine Studjes, 15, 1981, pp. S51-8S5.

x

&2 5

1. Report No.

N B2

2. Government Accession No. /5 J 5 70

3. Recipient’s Catalog No.

4. Title and Subtitle

/12 F

USL/NGT-19-010-900: A METHODOLOGY FOR THE DESIGN AND
EVALUATION OF USER INTERFACES FOR INTERACTIVE INFORMATION

SYSTEMS -

5. Report Date R
January 22, 1986 ##& et

6. Performing Organization Code

7. Authorl(s)
MOHAMMAD U. FAROOQ

8. Performing Organization Report No.

9. Performing Organization Name and Address

University of Southwestern Louisiana
The Center for Advanced Computer Studies

P.0. Box 44330
Lafayette, LA 70504-4330

10. Work Unit No.

11. Contract or Grant No.
NGT-19-010-900

12. Sponsoring Agency Name and Address

13. Type of Report and Period Covered
FINAL; 07/01/85 - 12/31/87

14. Sponsoring Agency Code

15. Suppiementary Notes

16. Abstract

This Working Paper Series entry represents the definition of proposed research addressing the
development and validation of a methodology for the design and evaluation of user interfaces for
interactive information systems. The major objectives of this research are: the development of a
comprehensive, objective, and generalizable methodology for the design and evaluation of user inter-
faces for information systems; the development of equations and/or analytical models to characterize
user behavior and the performance of a designed interface; the design of a prototype system for the
development and administration of user interfaces; and the design and use of controlled experiments
to support the research and test/validate the proposed methodology. The proposed design methodol-
ogy views the user interface as a virtual machine composed of three layers: an interactive layer, a
dialogue manager layer, and an application interface layer. A command language model of user sys-
tem interactions is presented because of its inherent simplicity and structured approach based on
interaction events. All interaction events have a common structure based on common generic ele-
ments necessary for a successful dialogue. It is shown that, using this model, various types of inter-
faces could be designed and implemented to accommodate various categories of users. The imple-
mentation methodology is discussed in terms of how to represent the various types of information
pertaining to an interaction event, and how to store and organize the information. A generalized
evaluation methodology is also proposed for the evaluation of user interfaces. The methodology will
allow interface developers to evaluate user interfaces from the viewpoint of the performance of their
users.

(Abstract continued on following page)

17. Key Words (Suggested by Author(s}) 18. Distribution Statement

Design and Evaluation of User
Interfaces, Information Storage and

Retrieval Systems

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages 22. Price’

103

.For saie by the National Technical Information Service, Springfield, Virginia 22161

